METHOD OF QUADRATIC INTERPOLATION

KELLER VANDEBOGERT

1. INTRODUCTION

Interpolation methods are a common approach to the more general
area of line search for optimization. In the case of quadratic inter-
polation, the function’s critical value is bracketed, and a quadratic
interpolant is fitted to the arc contained in the interval. Then, the
interpolant is minimized, and the new interval is determined based on
the relation of the minimizer to the original endpoints of the interval.

Put more formally, let z* maximize (or minimize) f(x). If z* is
not easily found through analytic methods, then it is significantly eas-
ier to bracket the interval over which this critical point occurs. Let
q(z) denote the quadratic interpolant of f(z). Minimizing a quadratic
function is trivial, and so the critical point of ¢ is easily obtained. We
then form a new bracketing interval by throwing away the ”worst”
point, which for our purposes would be the point that is the largest or
smallest, depending on whether we want to approximate a maximum
or minimum. The process is then iterated until a desired precision is

reached.

Date: September 3, 2017.

2 KELLER VANDEBOGERT

2. METHODS OF INTERPOLATION

In practice there are 3 methods of interpolation. There are 2 types
of 2-point interpolation methods, and a 3-point interpolation method.
The 2-point methods require knowledge of the derivative of the func-
tion f in which we are interested in optimizing. The 3-point method
does not require any derivatives, but of course requires an extra point.
Intuitively, knowing f’ gives a better sense of the function’s behavior,

and will hence provide a faster rate of convergence.

2.1. Method 1. Let ¢(z) denote the quadratic interpolant of f(z).
Then, by definition:

q(z) = az® + bz +c

For a, b, ¢ € R. Then, we can find our constants by bracketing the

critical point of f, whose endpoints are x; and x,. We have:

(2.1) f(21) = az? + bay + ¢ = q(x1)
f(x9) = azy + by + ¢ = q(x2)

f(z1) = 2ax, + b= ¢ (1)

This is a system of 3 equations with 3 unknowns, which are our
constants. Let f; = f(z;), and f/ = f’(x;). Then we can solve (2.1) for

a and b.

Y fi— fo— filer — 2)
(1 — 1)?
fi— fo— fi(z1 — x2)

(21— 22)?

(2.2)

b=f1+2

X1

METHOD OF QUADRATIC INTERPOLATION 3
The minimizer of ¢ is easily found to be —b/2a by setting ¢'(z) = 0.

From (2.2), our minimizer x,,;, can be found:

—b 1 (.1'1 — l’g)f{
(2~3) Tmin = 2—a =T — ém
1 xr1—x2

This of course readily yields an explicit iteration formula by letting

Tmin = 3. We have from (2.3):

1 (zp—1 — z1) fre
(2.4) Thtl = Th-1 5 fllc = fk—l_fkl

Tp—1—Tk

With (2.4), we generate xj,; and compare it with the previous two
points to find our new bracketing interval, and then continue the iter-

ation.

2.2. Method 2. This method is very similar to our first method but

instead generates q(z) by solving a different set of equations. We have:

(2.5) f(x1) = az? + bay + ¢ = q(x1)
f(xy) = 2axy + b= ¢ (1)
f(x2) = 2axe + b= ¢'(22)

We can of course solve these for a and b in the same way as in Section

2.1. We find the explicit form of the minimizer of ¢(z) to be:

Ty — T ,
2.6 Tnin = T1 — ———f
(2:6) i ph

In an identical manner to (2.4), we generate a recursion by defining

Tmin = T3, and we have:

4 KELLER VANDEBOGERT

Tp—1 — Tk 4
2.7 Lht1 — Lp—1 — —f _
() + f]/f_l _f]:; k—1

Which is commonly called the secant formula.

Remark 2.1. Letting xx_; — z in (2.7), and assuming that f”(zy)

exists, (2.7) becomes:

/
Ji
Th+1 = Tk — &,

k

But this is precisely the iteration defined by Newton’s method. This
motivates calling (2.7) the secant method, because it is just Newton’s

method with the secant approximation of f”(z) instead.

2.3. Method 3. Our third method is the 3 point method. Choose
3 points, 2 endpoints to bracket our critical point, and then a point
within the interval as well.

Using the Lagrange Interpolation formula, we can easily find our

interpolant ¢(z). We have:

(r—2) (2 — x3)
Q(z) N (I’l — .CCQ)(.Z'l — $3>f1+

(x —z1)(x — x3) (x — 1) (x — 29)
(2o — 21) (72 — xs)f2+($3 —x1)(x3 — 2)

fs

To find the minimum, we of course take the derivative of (2.8) and

set it to 0. By doing this, we obtain:

Loyt (fi = f2)(fa = f3)(f3 — f1)
(2.9) Zppin = 2(1+ @) + 22—) ot (03 —21) o + @1 — 72 s

And the iteration scheme is easily deduced:

METHOD OF QUADRATIC INTERPOLATION 5

(2.10)
1 (fr—1 = fi) (fre — frr1) (o — fr—1)

1
Tt = —(Lk— —HL'k +-=
2 2(1+ 2 (zr — Tpg1) foo1 + (Tpp1 — Tp—1) fro + (o1 — Tk) frn

This method differs slightly from the previous two methods, because
it is not as simple to determine the new bracketing interval. If x,,;,
lies between z; and x3, then we want to compare the distance between

Toin and xo. If

| T in — Ta| < €

Where € is the prescribed tolerance, then we are done. Otherwise
we create the new interval by checking which point is the largest or
smallest, depending on the nature of our critical point.

If 2, lies outside of our bracketing interval [z, z3], then we im-

mediately create a new bracketing interval in the same way as we just

described.

3. CONVERGENCE RATES

In the beginning of Section 2, we made a comment on the convergence
rates of the 2-point versus 3-point method. In this section, we intend

to make this comment precise.

Definition 3.1. Let z,, — x*. Then, the sequence {z,} is said to

converge to z* with order « if
|lzn — 27| < M[zpy — =7

For some constant M € R.

6 KELLER VANDEBOGERT

We will also need the following result, which we shall state without

proof:

Lemma 3.2. Let f € C""'[a,b], and let p be the polynomial of degree
< n that interpolates f at n+ 1 distinct points xo, x1, ..., x, € [a,b].

Then, to each = € |a,b] there exists a &, € (a,b) such that

k
_ M)
f(z) —plz) = CES g(-f — ;)
Where f™)(x) denotes the nth derivative of f. This remainder term

will often be denoted Ry, 1.

Theorem 3.3. Let f: R — R be 3 times continuously differentiable.
Let x* be such that f'(z*) = 0 and f"(2*) # 0. Then the sequence {x,}
1+V5

generated by (2.7) converges to x* with order =57.

Proof. We first want to prove that (2.7) does indeed converge to our
minimizer, x*.
Let L(x) be the 2 point interpolant for f’(x). Then, with Lemma

3.2, we have:

P - 1) =8 - e -)

Since 1 is generated by maximizing ¢(z), we have that L(zg.1) =

0. Thus,

f(Tr) = f///z(@

If we substitute the recursion for x,; given by (2.7) into the above

(9€k+1 - 301671)(351%1 - 3Ck)

equation, we can simplify this into:

METHOD OF QUADRATIC INTERPOLATION 7

(ka - $k—1)2
(fr. = fier)?

We now want to take advantage of the Mean Value Theorem. We

(31) Fa) = 51" bt

have:

fk B fk—l _ fufo

Tk — Tg—1

Where & € (xg, xr_1). Also note that since f’(z*) =0, we have:

(3.2) fi = 'ai) = f'(@") = (@i — ") f1(&)

For some &; € (x;,2%), i = k—1, k, k+ 1. Using (3.2) and the

previous line, we can rewrite (3.1) as so:

. lf/”<€)f”<£k>f”(£kfl)
2 f"(Ger)[f(60)]?

Now, let e; = |z; —2*|, i = k — 1, k, k + 1. Find constants my, ma,

(zk — 27) (21 — 27)

(3.3) Tpy1 — T

M, M5 such that

0<my <|f"(x)] <M

0 <my < [f"(z)] < My

where x is any value in the bracketing interval considered. Then, we

can bound (3.3):

2 2
myms; M, M;
3.4 eper_1 < e < €1.Cr_
() QME kCk—1 > Ck+1 > ng kCk—1

However, using (3.3):

8 KELLER VANDEBOGERT

Chi1 1 ") S (&) " (€-1)
exee-1 2 f"(&kr1)[f(0)]?

Now if we let each x; — x*, each & will tend toward x* as well since

they are contained within their respective bracketing intervals and f”,

f"" are continuous. Thus we see:

€k+1 f///(x*>
3.5
(3:5) €kek—1 - 2f"(x*)
This is well-defined since f”(z*) # 0 by assumption. Define M =

% , and using (3.4) and (3.5), we have that
(36) €ki1 S Mekek,l

In which case if § = max{eg, ex_1},

€k11 S M62 —0

So our sequence converges to z* when zy # ;. Now we seek to
determine the rate of convergence. To do this, we define y, = log(Mey).

We then have, using (3.6):

Yk+1 = Yk T Yk—1

This is of course a simple a recurrence relation. Let ¢ = %5 and

b= %5 We easily find the closed form of y; to be:

(3.7) i = ag® + Bo"
Where «, § are to be determined from our initial conditions. Since

6 < 1, for k sufficiently large, y; ~ a¢®. We then have, as k — oo:

METHOD OF QUADRATIC INTERPOLATION 9

Megyy exp(aght)

=~ — 1
M‘f’ei’ exp(agh?)

With this:

And with Definition 3.1, this implies that x;, — z* with order ¢ =

1+V5
5

4

Remark 3.4. We see that the secant method converges at a superlinear
rate, whereas Newton’s method converges quadratically under suitable

conditions.

We now seek to find the rate of convergence of the 3-point method.

The following result answers this question:

Theorem 3.5. Let f € C*. Suppose that x* satisfies f'(x*) = 0 and
f"(x*) # 0. Then the sequence {xy} generated by (2.10) converges to
x* of order 1.32.

Proof. Similar to Theorem 3.3, we begin by writing our function f in

the following form:

(3.8) f(x) = L(x) + Rs(x)

Where Rj in the third degree remainder term for the Lagrange inter-
polant. Now, since z* is a critical point, we clearly have that f’(z*) = 0.

With this and (3.8):

10 KELLER VANDEBOGERT

L'(z*) + Ry(z*) =0

L'(x*) can be easily computed, we have:

(3.9)
s 2r* — (9 + x3) 20" — (x1 + x3) 20" — (21 + x9)
1

(Il - 1102)@1 - I3) 2(302 - $1)(x2 - $3) 3(303 - $1)($3 - $2)

+R5(z*) =0

We now use (3.9) to solve for x*:

. Ji fa f3
2 ((901 — @) (21 — 903)+(~”C2 — x1) (22 — 503)+(563 — x1) (23 — T1)
fi(zg + x3) fo(z1 + x3) f3(w1 + x3)
T o —)@ —a) | (@ — o) (s — 73) | (@5 — 0) (W5 — 22)

Which then gives:

)it

1 R (x*)
f f
(:1:17902)%:[17:133) + (mgfxl)?xszl‘g) + (333*11)?153*331)
f1(za+x3) fo(x14x3) fa(xz14x2)
+ 1((I1$2)(ﬂ?113) - (z2—z1)(w2—w3) + (963561)(963902))

fi f2 f3
7 T 1) T 1

(x1—x2)(x1—23

xo—2x1)(T2—1T3 z3—x1)(x3—11)
However, it is easy to see that we can use (2.10) and rewrite it in an

awfully convenient form:

fi(za+x3) fo(z1+x3) fa(r1+x2)
oy = LEe)—ws) T Gama)(@a—ws) Ga—w))(ws—a2)
47 f1 + fa f3
(z1—z2)(®1—23) ' (22—21)(w2—23) = (z3—21)(T3—71)

But this is precisely the rightmost term of (3.10), so we easily deduce:

Ry (z")
fi f2 f3

(z1—2)(z1—23) + (z2—x1)(z2—23) + (z3—x1)(z3—21)

1
(3.11) 2" —axq4=—=

METHOD OF QUADRATIC INTERPOLATION 11

Now, similar to the proof of Theorem 3.3, let ¢; = x* — z;, where
i =1, 2, 3, 4. With elementary manipulations of (3.11), we find the

following form:

(3.12)
es(fi(ez—es)+fa(es—er)+f3(e1—ez)) = —%Ré(l’*)(@l—@)(62—63)(63—61)

By means of the Taylor expansion about z*, it is clear that

fi= S + 506 + O

Where we've used the fact that f’(2*) = 0. Now, for e; sufficiently
small, we have neglect the third order term of the Taylor expansion.
Substituting each respective Taylor expansion into (3.12), we get the

following:

el ((f(x*)—i-%e%fﬁ(fk)) (62_63)_|_(f(x*)+%e§f”(x*)) (63—61)+(f(x*)‘f‘%egf”(x*)) (61_62))
_ _%Rg(x*)(el —e3)(es — e3)(e5 — €1)

Now examine the coefficient of e4 in the above expression. We find:

(3.13)
(£ 5 @) (eames) (£ 0) (esmen)(F()+ 560" (00) (er—e2)
= %f”(a:*)(e%(eg —e3) +es(es —e) +ei(e — 62))
= 57 (6 = Aes + (& - Aea + (- D)

f/(x7)(er — e2)(e2 — e3)(e3 — e1)

N | —

12 KELLER VANDEBOGERT

Using (3.12) and (3.13), we see:

1 /o
—f”(w*)R?)(.CL")

We now seek an explicit form of the derivative of our remainder term.

(314) €4 =
From the form given by Lemma 3.2, it can be found that

1 1
(3.15) Rj(a™) = _gfm<£x*)(61€2 + eses + eze1) + ﬁfw (n)erezes

Where 7 is some constant. We now want to to neglect the fourth
order term, because the fourth derivative is bounded and the product
ejegez will become arbitrarily small much faster than the first term.

Using (3.15) and (3.14):

"
(316) €4 &(6162 + ege3 + 6361)

- 6f”($*)

Which easily generalizes to:

(3.17) epy2 = M(er—16p + erery1 + €rtr16p-1)

Where we define M = —g}#égf). It is also clear that for sufficiently
small ey, exr1 = O(er) = O(ex—1). Thus, it is possible to find some

constant, M, such that:

leral < Mleg-llex|

In a similar fashion to the proof for Theorem 3.3, we can easily define

; = log(M|e;|). By doing so, we easily see that:

METHOD OF QUADRATIC INTERPOLATION 13

(3.18) R A

Now tend k sufficiently large. Then, it is clear that oy o =~ dp + dp_1.

With this and (3.18) we spawn the following recurrence:

Okt2 = O + 01

This recurrence has a solution of the form:

(3.19) Ok = arl + B15 + 74

Where each 7; satisfies the characteristic equation 73 — 7 —1 =0, i
=1, 2, 3, and our constants are to be determined by initial conditions.
Let 7 denote the real root of this characteristic equation. Then, by
examining the roots of this equation, we see that 7, = 73, complex
conjugates, and that || = |r3] < 1. Thus for k sufficiently large,
qQ ~ aTf.

Now examine 0, — 710;_1. By (3.19), we can clearly see that this

must tend to 0. However, using our definition for dy:

M|€k+1|
01 — M0 >0 — ———
k1 = Tife Tl
But then we have that
(3.20) ok =2 e

|21 — 2*[
But of course by Definition 3.1, this implies x;, — z* with order 7.

Numerically, we see that 7 ~ 1.3247, and we are done.

14 KELLER VANDEBOGERT
From these two results we see that having knowledge of the derivative
of f does indeed allow for a more accurate interpolant and thus a faster

rate of convergence to the minimizer z*.

4. NUMERICAL TESTS

A selection of interesting and nonelementary functions were chosen
to optimize. The material below gives the function, along with the
estimated critical points solved in MATLAB. The rightmost results
are found with Method 2 (secant method), and the leftmost results
are found with Method 3 (3-point). The appendix will contain the
MATLAB code used for each method, and some discussion on possible

improvements. Our allowed tolerance was 10732, or machine precision.

METHOD OF QUADRATIC INTERPOLATION 15

(1) f(x) = e + 22

Eztimated Critical Point:
0.608036TE6R5228R2

at the point x =
0.426302751006863

Iterations:
10

(2) flz) =

Eztimated Critical Point:
-0.805783106429131

at the point x =
0.511180626904120

Iterations:

a
i

Eztimated Critical Point:
0.608036TE6R5228R2

at the point x =
0.426302751032028

Iterations:
]

—2e~V3(\/z + 1) + cos(z)

Eztimated Critical Point:
-0.B05783106429131

at the point x =
0.511180622079723

Iterations:
36

(3) flo) = =% (xﬁ — 362 +4502* — 240023 + 540022 — 4320z + 720)

(The 6th Laguerre Polynomial)

Eztimated Critical Point:
-0.54359959000%9618

at the point x =
0.617030853278

270

Iterations:
10

(4) f(2) = 5

Eztimated Critical Point:
1.129173885450141

at the point x =
1.461632144968362

Iterations:
]

Eztimated Critical Point:
-0.543599590009618

at the point x =
0.617030850410704

Iterations:

8
(=

(Reciprocal of the Gamma Function)

Eztimated Critical Point:
1.129173885450141

at the point x =
1.461632155545645

Iterations:
15

16

KELLER VANDEBOGERT

(5) f(x) = 642" — 1122° + 5623 — 7x (The 7th Chebyshev Polyno-

mial)
Estimated Critical Point: Estimated Critical Point:
-1 -1
at the point x = at the point x =
0.222520933956314 0.22252093381293%
Iterations: Iterations:
3 20

6) f(z) = x(log(x) - 1) — sin(z)

Eztimated Critical Point: Eztimated Critical Point:
-1.8922492250332938 -1.8922492250332938
at the point x = at the point x =
1.302964001216013 1.302964006102710
Iterations: Iterations:
7 &

(7) f(2) = =2+ e + xlog(x)

Eztimated Critical Point: Eztimated Critical Point:
-0.686444414617745 -0.686444414617745
at the point x = at the point x =
1.309799585804151 1.309799586743216
Iterations: Iterations:
8 11

(8) f(x) = —li(z) + = log(log(x)) + cos(z) (li(x) denotes the Loga-
rithmic Integral)

Eztimated Critical Point: Estimated Critical Point:
-2.872294656399205 -2 .872204856300204

at the point x = at the point x =
3.036425545348658 3.036425539751614

Iterations: Iterations:

& 15

METHOD OF QUADRATIC INTERPOLATION

3

(9) f(z) = 3y/merf(z) — % (erf(x) denotes the Error Function)

2

Eztimated Critical Point:
0.489631524205925

at the point x =
0.753089164979675

Iterations:

8
(=

(10) f(x) = 3y/merf(z) — sin(z)
Eztimated Critical Point:
-0.142207548300912

at the point x =
1.4474142712896237

Eztimated Critical Point:
0.489631524205925

at the point x =
0.753089162650208

Iterations:
24

Eztimated Critical FPoint:
-0.142207548300912

at the point x =
1.447414272474958

Iterations: Iterations:

3 1a

It is interesting to note some of the discrepancies in iteration. In-
deed the 3-point method took almost twice as many iterations as the
secant method on average. However, this could be due to many fac-
tors. Firstly, the use of nonelementary functions perhaps made the
3-point interpolant less accurate than the secant method, which took
advantage of the function’s derivative.

It would be expected that the 3-point interpolant could be as good
as or possibly better than the secant method for polynomials. For
function (3), this holds, however, when looking at (5), we see that
it took significantly more iterations for just a simple polynomial. We
also note the largest discrepancy in iterations occurred for function (2).

This is an interesting case because we are only using transcendental

functions, as opposed to some of the other nonelementary functions.

18 KELLER VANDEBOGERT

5. CONCLUSION

We explored the method of quadratic interpolation for optimization
and some of the different approaches to actually find our quadratic
interpolant. Analytically, it was shown that the secant method should
in general converge more quickly than the 3-point method. This is
intuitively explained by the fact that the derivative of a function gives
information on that function’s curvature. After this, numerical tests
were shown on a wide variety of functions and on average the secant

method did significantly better than was theoretically predicted.

METHOD OF QUADRATIC INTERPOLATION 19

APPENDIX

Two codes were written in MATLAB for Section 4 on numerical
testing. In this appendix, the code will be provided and some dicussion

on possible improvements as well.

Secant Method.

al (s> clear

P clc

3= format long

4

5

[%

7= x=1

g - f = inline ('Your Function Here');

9 - Df = inline('Derivative of £'):

10

11 EFxstart and xnew are an initial bracketing
12 - xstart = 1;

13 — xnew = 2;

14 — it = 0O;

15

16 — while abs(xXstart - xnew) > 10™(-32)
17 = xnew?2 = xnew - (xnew - xstart),/ (Df (xnew)-Df (xstart)) *Df (gnew) ;
18 |= XsStart = Xnew;

19 — HNEW = Xnewz;

20 - it = it+l;

21 — end

22

23 = disp('Estimated Critical Point:')
24 = disp (f (xnew))

25 = disp('at the point x =')

286 — disp (xnew)

27 - disp('Iteration=:"')

P
(=1}
|

disp(it)

FIGURE 1. The Secant Method

This code is actually pretty compact and runs quickly. It would be
useful to input some kind of searching mechanism which can actually
determine the bracketing interval for the user, whereas this code re-
quires the user to find their own bracketing interval. Also, in many

cases, if your critical point is not contained within the initial interval,

20 KELLER VANDEBOGERT

this programs will still find the optimizer, but it takes more iterations

than normal.

METHOD OF QUADRATIC INTERPOLATION 21

3-Point Method.

1= clear

2 - clc

3= format long

4

5 %2Initial bracketing interval

[X = [x1 ®2 =3]:

7

g - f = inline('Your Function Here')};
9

10 %Find interpolating polynomial

-
.
|

interp = polyfic(x, fi(x),2);

i
8]
|

¥ = [%(2),%(3),-interp(2)/2/interp(l)];
it=1;

o e
L s L
| |

while abs(x(3)-x(2))>10"(-32) && abs(f(x(3))-f£(x(2)))>10"(-32)
interp = polyfic(x,f(x),2);

-
o™
|

17— ¥ = [%(2),%(3),-interp(2)/2/interp(l)];:
18 — ic=ic+1;

18 = end

20

21— disp('Estimated Critical Point:')

22 — dispifiz(2)))

]
]
|

disp('at the point x =")

R
=
|

disp(x(2))

]
o
|

disp('Iterations:"')

(X
=1
|

di=p(it)

5]
25
|

disp('Iteration=:"')

FiGure 2. 3-Point Method

This code is not a perfect recreation of the theoretical 3-Point Method,
because it does not search both ends of the bracketing interval to find
the new bracketing interval. This is one major reason why it is possible
that there was a larger than theoretically expected discrepancy between
the amount of iterations in Section 4. For a code that compares both
ends of the interval, we would find that each consecutive interval is
more accurate. Another point of this is that the points chosen for the
interval were always uniformly spaced. An interesting consideration is
to find a bracketing interval, and then interpolate the Chebyshev nodes
as opposed to just the uniformly spaced nodes. This special set of

nodes will provide the best possible polynomial interpolant over any

22 KELLER VANDEBOGERT

given interval. Also, another possible reason for the discrepancy in it-
erations is the tolerance values. Choosing the tolerance too small in
some cases would cause the bracketing interval to become too small
and it was difficult for MATLAB to distinguish between points when

the tolerance was right at machine precision.

REFERENCES

[1] Optimization Theory and Methods: Nonlinear Programming. Wenyu Sun, Ya-
Xiang Yuan. 89-98.

