
NOTES IN COMMUTATIVE ALGEBRA: PART 2

KELLER VANDEBOGERT

1. Completion of a Ring/Module

Here we shall consider two seemingly different constructions for the

completion of a module and show that indeed they are isomorphic.

Many standard results and definitions from topology shall be employed

and assumed familiar here. We first have:

Definition 1.1. Let M be a group endowed with some topology.

Then M is called a topological group if the mappings M ×M → M ,

(m,n) 7→ mn and M → M , m 7→ m−1 are continuous with respect to

this topology.

Indeed for the above case, we immediately see that inversion and

multiplication are in fact homeomorphisms.

Definition 1.2. Consider an A-module M endowed with some topol-

ogy. M is called a topological module ifM is a topological group with re-

spect to addition, and scalar multiplication A×M →M , (a,m) 7→ am

is continuous when A is endowed with the discrete topology.

Here we shall be interested in the case when we are actually deal-

ing with a neighborhood filter consisting of submodules. We have the

following:
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Lemma 1.3. Let M be an A-module with F = {Mλ}λ∈Λ a neighborhood

filter of submodules (Λ is a directed set). Then, B := {x + Mλ : x ∈

M, λ ∈ Λ} is a basis for a topology on M .

Under the assumptions of the above lemma, we shall refer to the

neighborhood filter {Mλ}λ∈Λ as merely a filter of submodules of M .

Intuitively, this tells us that a filter of submodules immediately induces

a topology on any module, which we will call the linear topology induced

by this filter, and the basis consists of all translations by some x ∈M .

We can now talk about convergence in terms of this filter.

Definition 1.4. Let M be a topological module with a filter of sub-

modules. We say that a net xλ converges to x ∈M if for every λ there

exists a submodule Mµ such that xγ − x ∈Mµ for all γ > λ.

Cauchy sequences are defined in the obvious fashion with respect

to the above definition. Let us suppose for now that the topology

induced in Hausdorff, in which we know that limits will be unique.

Then, we can take some motivation from elementary analysis. In the

real number system, it is well known that every Cauchy sequence is in

fact convergent to a real number.

Then we want to consider the set of all Cauchy sequences C on an A-

module M with topology induced by the submodule filter {Mλ}λ∈Λ. It

is obvious that this set can be given an A-module structure by defining

the natural addition and action of A as {xn} + {yn} := {xn + yn},

a{xn} := {axn}.

We now consider the set of all sequences converging to 0, which we

shall denote C0. This in fact encompasses all convergent sequences

with respect to the above topology since if xn → x, xn − x → 0. It
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is not so difficult to see that this is a submodule of C, so that we can

talk about taking quotients.

Consider the quotient module C/C0. Then, we define this to be the

completion of M with respect to the topology induced by our submod-

ule filter. There is a natural module homomorphism θ : M → M̂ :=

C/C0 taking m 7→ {m}+C0, {m} just being the constant sequence. If

it is the case that θ is an isomorphism, then we say that M is complete

with respect to the induced topology. Since C0 is a submodule, we get

the immediate result:

Proposition 1.5. Every field F is complete.

Proof. Viewing F as a module over itself, just note that the kernel

of our map θ is an ideal and hence equals either 0 or F . The only

possible submodule filter inducing a Hausdorff topology would consist

of {0} after some truncation. If the kernel is F , then F = 0 identically

since this would imply that every constant sequence converges to 0.

Hence, Ker θ = {0} and by the first isomorphism theorem, F ∼= C/C0

and F is complete by definition. �

Although the above construction of M̂ may be more intuitive, it can

be unwieldy in practice. Let us consider another construction that will

yield something a little more concrete.

Let {Mλ}λ∈Λ be a submodule filter for an A-module M . Then, we

can of course take this submodule filter as a base of neighborhoods at

0. Given any Mλ, we see that M c
λ can be written as a union of cosets

and is hence open. But Mλ itself is open, so it must be both open

and closed. Then we automatically find that the quotient topology on

M/Mλ is in fact discrete.
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Now consider the family of mappings φλµ : M/Mµ → M/Mλ where

m + Mµ 7→ m + Mλ. We can then construct the inverse system

{Mλ; φλµ}. We can now consider the following set:

lim←−M/Mλ := {~m ∈
∏
λ

M/Mλ : mλ = φλµ(mµ) for all λ 6 µ}

This set lim←−M/Mλ is called the inverse limit. We define this as the

completion of our module. Intuitively, the inverse limit glues these sets

together in terms of the associated mappings.

Now, give each M/Mλ the discrete topology and
∏
M/Mλ the prod-

uct topology. Then, M̂ ⊂
∏
M/Mλ inherits the subspace topology

and we can consider the natural map ψ : M → M̂ defined by sending

m 7→
∏

(m+Mλ). This map is continuous as the composition with the

projection pλ : M̂ → M/Mλ is continuous, and M̂/Ker pλ ∼= M/Mλ

since the projection is clearly surjective.

It can be shown that the linear topology defined by taking Ker pλ

as our submodule filter on M̂ coincides with the previously defined

topology on M̂ . This means that performing the same construction on

M̂ yields a module isomorphic and indeed homeomorphic to M̂ .

Whenever the map ψ : M → M̂ is an isomorphism, we say that

M is complete. The previous paragraph shows that the completion is

complete, as expected.

Now it is natural to ask how this is related to the previous construc-

tion. The following theorem will clear this up:

Theorem 1.6. With M̂ = C/C0 are defined before, we have an iso-

morphism α : lim←−M/Mλ → M̂ defined by taking (mλ + Mλ)λ∈Λ 7→

{mλ}λ∈Λ + C0.
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Furthermore, with

θ :M → M̂

m 7→ {m}+ C0

And

η :M → lim←−M/Mλ

m 7→ (m+Mλ)λ∈Λ

The following diagram commutes:

lim←−M/Mλ
α

// M̂

M

θ

OO

η

dd

With this, we can now consider the most natural cases. For an A-

module M , there is a natural filter IM ⊃ I2M ⊃ I3M ⊃ I4M ⊃ . . . .

Then, the completion with respect to this filter is called the I-adic

completion and is denoted M̂I . Of particular interest is when I is a

maximal ideal m. In this case we have an analog to the localization of

a ring with respect to some prime ideal p.

Proposition 1.7. The completion of a ring R with respect to a maxi-

mal ideal is a local ring with maximal ideal

m̂m = {(0, a2+m2, a3+m3, . . . ) ∈
∏

R/mi : ai ≡ aj mod mi for all j > i}

Example 1.8. Consider the ring of polynomials R := k[x1, . . . , xn]

over a field k. Then, (x1, . . . , xn) := m is a maximal ideal and the



6 KELLER VANDEBOGERT

m-adic completion can be viewed as the ring of formal power series

k[[x1, . . . , xn]].

To see this, define φ : R̂m → k[[x1, . . . ,xn]] by sending f 7→ (f +

m, f + m2, . . . ). The preimage of any (f1 + m, f2 + m2, . . . ) can be

computed as f1 + (f2− f1) + (f3− f2) . . . , and this is trivially a homo-

morphism. Hence these rings are isomorphic.

Example 1.9. Consider the ring Z. Then, consider the completion

with respect to any prime ideal (p), where p is a prime number. This

is also maximal, and we can view Z as the ring Z[p] by writing any

integer in its base p expansion. Then the completion of Z with respect

to this maximal ideal is of the form Z[[p]], where our addition is defined

in base p.

This is known as the ring of p-adic integers and is denoted Zp. These

numbers are often written merely as digits of the form . . . an . . . a3a2a1a0,

where 0 6 ai < p is the coefficient of pi in our power series expansion,

and have some interesting properties.

For example, in Z2, . . . 1111 + 1 = 0, so that . . . 1111 = −1. Ex-

panding this out in terms of the power series definition, we find that

1 + 2 + 4 + 8 + · · · = −1 in the ring of 2-adic integers.

Indeed, in general we see that (p− 1)(1 + p+ p2 + . . . ) = −1 in Zp.


