HOMEWORK 2 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. PROBLEM 1

(1) For |z— 2| = |z — 22|, merely recognize that this is the set of all
z € C that are equidistant to z; and z,. This is geometrically
represented as the perpendicular bisector of the line segment

connecting z; to 2s.

(2) If 1/2 = z, then 1 = 2z = |z|2. Thus this set is just the unit

circle in the complex plane.

(3) For Re(z) = 3, this is just a vertical line in the complex plane

at the point x = 3, where z = x + 1y.

(4) Similar to the previous set, Re(z) > ¢ would be the set of all
z € C lying strictly to the right of the line x = ¢ in the complex
plane. Respectively for Re(z) > ¢ this is the set of all z € C
lying to the right of the line x = ¢, including the line itself.

(5) Let @ = ay + iaz and b = by + iby. Then, Re(az +b) > 0 =
a1x — asy + by > 0, where z = x + iy. This then simplifies

toy < g+ % Since R? 2 C, this can merely be viewed in
a2 a2
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the xy plane as the set of points lying strictly below the line
y=%g+u

az a2

(6) Let z = = + iy. Then, |z| = Re(z) + 1 becomes z* + y? =
z + 1 which simplifies to (z — 3)? 4 y* = 2, which, by the same

reasoning as in (5), can be viewed as the circle centered at (3, 0)

V5

with radius 5> in the zy plane.

(7) Im(z) = ¢ can be viewed as a horizontal line at height ¢ in the

xy plane.

2. EXERCISE 3

Proof. Given w = se'®, by Euler’s formula (I should probably clarify,
the one that says e'® = cos(¢) + isin(¢)) we know that € is periodic

of period 27. Thus we really have the following:

For any k € Z. Then, solving 2" = w leads to

- Sl/nei(¢+2k7r)/n

Which gives distinct values for kK =0...n — 1, implying that there are

precisely n distinct solutions to this equation. 0

3. EXERCISE 12

Proof. Define f(z) := +/|z[ly|. Then, clearly ¢ = g—z = 0. The

Cauchy-Riemann equations yield the following:

ul_,
||
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Implying f is differentiable at x = y = 0. However, since the Cauchy-
Riemann equations hold for no deleted neighborhood of the origin, f

is holomorphic nowhere. U

4. EXERCISE 13

Proof. First suppose that f(z) = u+dv is holomorphic and that Re(f)

is a constant. Then, % = g—Z = 0. Employing the Cauchy-Riemann
equations yields:
v
0
Ox
v
20
dy
The condition 42 = 0 implies v = v(y), which then means g—z = Z—Z =

0, from which we can conclude that v is a constant. Thus, u and v are

both constants, so f itself is constant. O

Actually, for part 2 of this problem, you can literally copy and paste
this entire argument and interchange the order of u and v to find the

same conclusion... which is precisely what I am going to do.

Proof. Second suppose that f(z) = u + v is holomorphic and that

Im(f) is a constant. Then, % = g—z = 0. Employing the Cauchy-
Riemann equations yields:
ou
20
ox
ou
20
Ay
The condition 4% = 0 implies u = u(y) which then means g_Z = Z—Z =

0, from which we can conclude that u is a constant. Thus, v and v are

both constants, so f itself is constant. 0
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Proof. Lastly suppose that we have | f| = u?+wv? is constant everywhere

(where f = u +iv). Then
afl _ 0— 1(8(u2 + v?) N l@(uQ +?)2))
0z 2 ox 7 oy

After some simplification we find that:

ou N v . ( Ju 81})
U— +v— —1
Ox Ox
After equating real and imaginary parts we find the following system:

du v
k| [ -0
oy oyl LY
Now the 2x2 matrix is merely the Jacobian J; of f. Then, if Det(J;) #
0, Jy is invertible and we thus conclude that v = v = 0, so f is trivially

constant. Thus assume u, v # 0. Then Det(J;) = 0. However, using

the Cauchy Riemann equations, we have:

Oou Ov Ovﬁu_auz 81}2_

Det((]f):%a—y—%a—y—% +£ —O

From which we conclude that all partial derivatives vanish for any

z € C. Thus, f is constant, and the result is proved. O



