
HOMEWORK 2 COMPLEX ANALYSIS

KELLER VANDEBOGERT

1. Problem 1

(1) For |z−z1| = |z−z2|, merely recognize that this is the set of all

z ∈ C that are equidistant to z1 and z2. This is geometrically

represented as the perpendicular bisector of the line segment

connecting z1 to z2.

(2) If 1/z = z̄, then 1 = zz̄ = |z|2. Thus this set is just the unit

circle in the complex plane.

(3) For Re(z) = 3, this is just a vertical line in the complex plane

at the point x = 3, where z = x+ iy.

(4) Similar to the previous set, Re(z) > c would be the set of all

z ∈ C lying strictly to the right of the line x = c in the complex

plane. Respectively for Re(z) ≥ c this is the set of all z ∈ C

lying to the right of the line x = c, including the line itself.

(5) Let a = a1 + ia2 and b = b1 + ib2. Then, Re(az + b) > 0 =⇒

a1x − a2y + b1 > 0, where z = x + iy. This then simplifies

to y < a1
a2
x + b1

a2
. Since R2 ∼= C, this can merely be viewed in
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the xy plane as the set of points lying strictly below the line

y = a1
a2
x+ b1

a2

(6) Let z = x + iy. Then, |z| = Re(z) + 1 becomes x2 + y2 =

x+ 1 which simplifies to (x− 1
2
)2 + y2 = 5

4
, which, by the same

reasoning as in (5), can be viewed as the circle centered at (1
2
, 0)

with radius
√
5
2

in the xy plane.

(7) Im(z) = c can be viewed as a horizontal line at height c in the

xy plane.

2. Exercise 3

Proof. Given ω = seiφ, by Euler’s formula (I should probably clarify,

the one that says eiφ = cos(φ) + i sin(φ)) we know that eiφ is periodic

of period 2π. Thus we really have the following:

ω = sei(φ+2πk)

For any k ∈ Z. Then, solving zn = ω leads to

z = s1/nei(φ+2kπ)/n

Which gives distinct values for k = 0 . . . n− 1, implying that there are

precisely n distinct solutions to this equation. �

3. Exercise 12

Proof. Define f(z) :=
√
|x||y|. Then, clearly ∂v

∂x
= ∂v

∂y
= 0. The

Cauchy-Riemann equations yield the following:√
|y|
|x|

= 0
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|x|
|y|

= 0

Implying f is differentiable at x = y = 0. However, since the Cauchy-

Riemann equations hold for no deleted neighborhood of the origin, f

is holomorphic nowhere. �

4. Exercise 13

Proof. First suppose that f(z) = u+ iv is holomorphic and that Re(f)

is a constant. Then, ∂u
∂x

= ∂u
∂y

= 0. Employing the Cauchy-Riemann

equations yields:
∂v

∂x
= 0

∂v

∂y
= 0

The condition ∂v
∂x

= 0 implies v = v(y), which then means ∂v
∂y

= dv
dy

=

0, from which we can conclude that v is a constant. Thus, u and v are

both constants, so f itself is constant. �

Actually, for part 2 of this problem, you can literally copy and paste

this entire argument and interchange the order of u and v to find the

same conclusion... which is precisely what I am going to do.

Proof. Second suppose that f(z) = u + iv is holomorphic and that

Im(f) is a constant. Then, ∂v
∂x

= ∂v
∂y

= 0. Employing the Cauchy-

Riemann equations yields:
∂u

∂x
= 0

∂u

∂y
= 0

The condition ∂u
∂x

= 0 implies u = u(y) which then means ∂u
∂y

= du
dy

=

0, from which we can conclude that u is a constant. Thus, u and v are

both constants, so f itself is constant. �
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Proof. Lastly suppose that we have |f | = u2+v2 is constant everywhere

(where f = u+ iv). Then

∂|f |
∂z

= 0 =
1

2

(∂(u2 + v2)

∂x
+

1

i

∂(u2 + v2)

∂y

)
After some simplification we find that:

u
∂u

∂x
+ v

∂v

∂x
− i
(
u
∂u

∂y
+ v

∂v

∂y

)
= 0

After equating real and imaginary parts we find the following system:[
∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

] [
u
v

]
= 0

Now the 2x2 matrix is merely the Jacobian Jf of f . Then, if Det(Jf ) 6=

0, Jf is invertible and we thus conclude that u = v = 0, so f is trivially

constant. Thus assume u, v 6= 0. Then Det(Jf ) = 0. However, using

the Cauchy Riemann equations, we have:

Det(Jf ) =
∂u

∂x

∂v

∂y
− ∂v

∂x

∂u

∂y
=
∂u

∂x

2

+
∂v

∂x

2

= 0

From which we conclude that all partial derivatives vanish for any

z ∈ C. Thus, f is constant, and the result is proved. �


