
NOTES IN COMMUTATIVE ALGEBRA: PART 1

KELLER VANDEBOGERT

1. Results/Definitions of Ring Theory

It is in this section that a collection of standard results and definitions

in commutative ring theory will be presented. For the rest of this paper,

any ring R will be assumed commutative with identity. We shall also

use ”=” and ”∼=” (isomorphism) interchangeably, where the context

should make the meaning clear.

1.1. The Basics.

Definition 1.1. A maximal ideal is any proper ideal that is not con-

tained in any strictly larger proper ideal. The set of maximal ideals of

a ring R is denoted m-Spec(R).

Definition 1.2. A prime ideal p is such that for any a, b ∈ R, ab ∈ p

implies that a or b ∈ p. The set of prime ideals of R is denoted Spec(R).

Definition 1.3. The radical of an ideal I, denoted
√
I, is the set of

a ∈ R such that an ∈ I for some positive integer n.

Definition 1.4. A primary ideal p is an ideal such that if ab ∈ p and

a /∈ p, then bn ∈ p for some positive integer n.

In particular, any maximal ideal is prime, and the radical of a pri-

mary ideal is prime.
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Definition 1.5. The notation (R,m, k) shall denote the local ring R

which has unique maximal ideal m and residue field k := R/m.

Example 1.6. Consider the set of smooth functions on a manifold M .

Define an equivalence relation by considering f and g related at a point

p ∈M if there exists a neighborhood U of p such that f |U = g|U . Then,

let [f ] denote the class of f , which is referred to as its germ. The set

of germs at p is a commutative local ring, with [f ] + [g] := [f + g], and

[f ][g] := [fg]. The maximal ideal is precisely the set of functions such

that f(p) = 0.

Example 1.7. Given a commutative C∗-algebraA, setX = m-Spec(A).

Then A/J = C for all J ∈ X by the Gelfand-Mazur theorem. Hence

there exists a naturally defined homomorphism

πJ : A→ C

Now, to each a ∈ A associate a function â on X defined by

â(J) = πJ(A)

Then â is called the Gelfand Transform of a ∈ A. It is due to a

result of Gelfand-Naimark that if A is unital, the Gelfand transform is

an isomorphism of A onto the space of continuous functions on X.

Definition 1.8. The Jacobson radical J(R) is the intersection of all

maximal ideals of the ring R.

The Jacobson radical has a nice characterization:

Proposition 1.9. If a ∈ J(R), then 1+a is a unit. Moreover, J(R) =

{x ∈ R | 1 +Rx ⊂ R×}.
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Proof. Suppose first that a ∈ J(R). Then, 1+ax /∈ m for any maximal

ideal m, since else 1 = m−ax ∈ m, a contradiction. Hence, (ax+b) = R

so that r(1 + ax) = 1 for some r ∈ R.

Conversely, argue by contraposition. If a /∈ J(R), then we can find a

maximal ideal m such that a /∈ m so that (a)+m = R. Thus there exists

r ∈ R and m ∈ m such that ra+m = 1. But then m = 1−ra ∈ 1+Ra,

and m is not a unit, so we are done. �

Example 1.10. For any local ring (R,m, k), J(R) = m, and the set of

units R× is merely R\m. Indeed, R is local if and only if 1+m consists

entirely of units.

Definition 1.11. An R-module M will be called finitely generated if

there is a finite set {xi} such that given x ∈ M there exists ri ∈ R

for which x = r1x1 + · · ·+ rnxn. The category of all finitely generated

R-modules will be denoted by mod R.

Example 1.12. In the above, if R is a field, then we merely have a

vector space of dimension n <∞.

The following is used to prove a fundamental result in commutative

algebra known as Nakayama’s Lemma.

Theorem 1.13. Let M be a finitely generated R-module with a an

ideal of R. If φ : M → M is an R-module homomorphism such that

φ(M) ⊂ aM then there exists a monic polynomial p(x) ∈ a[x] such that

p(φ) = 0. More precisely, there exist ai ∈ a such that

(1.1) φn + a1φ
n−1 + · · ·+ an−1φ+ an = 0
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Proof. Choose a generating set {x1, . . . , xn}. Then, for each i, we

have that φ(xi) =
∑

j aijxj where each aij ∈ a.

Subtracting, the above can be stated concisely as
∑

j(δijφ−aij)xj =

0 (δij denotes Kronecker delta). Then, if A is defined to be the matrix

with entries (δijφ− aij) as the i, j entry, we see that Av = 0 for v the

column matrix of generators (xi).

Multiplying by the adjugate of A, we find that det(A)xi = 0 for each

i and hence det(A)M = 0. Employing the standard Laplace expansion

for det(A) yields our monic polynomial, so we are done.

�

Remark 1.14. We can actually conclude further by noting the form of

our determinant that ai ∈ ai where the ai are as in (1.1).

Lemma 1.15 (Nakayama’s Lemma). Let M be a finitely generated R-

module and I an ideal of R such that M = IM . Then there exists

a ∈ I such that (1 + a)M = 0.

Proof. Using the previous theorem, our φ is simply the identity map-

ping. Then, we find that M + (a1 + . . . an)M = 0. Setting a1 + . . . an =

a ∈ I, we have that (1 + a)M = 0. �

Example 1.16. If I ⊂ J(R) in the above, then (1 + a) is a unit and

we conclude further that M = 0.

Example 1.17. Suppose again that I ⊂ J(R), but assume that M =

N + IM for some submodule N of M . Then, we see that M/N =

I(M/N), and employing the previous example, M/N = 0 so that M =

N .
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Consider the following construction: given an R-module M over a

local ring (R,m, k), take the quotient M/mM ∼= k ⊗M . As a module

over a field, this is actually a vector space. Choose a basis {x1, . . . , xn}

of this vector space and consider the preimage xi ∈ M of each xi

with respect to the canonical projection. Then it is obvious that any

proper subset of this set of generators cannot generate M (since else

it would have to generate the vector space k ⊗ M). Also, the set

X = {x1, . . . , xn} generates all of M since for any x ∈M its image in

M/mM is in the span of our {xi}. Taking the preimage of this linear

combination, we find that x = r1x1 + · · ·+ rnxn for some ri ∈ R. This

motivates the following:

Definition 1.18. Let X be a generating set for an R-module M . If

no proper subset of X generates M , then X is called a minimal basis.

In general, minimal bases need not contain the same number of el-

ements. However, by our above construction, we have the following

result for local rings:

Theorem 1.19. Let (R,m, k) be a local ring.

(1) For any basis of M/mM , its preimage will be a minimal basis

of M .

(2) Conversely, every minimal basis is obtained in this manner.

(3) Given any two minimal bases {xi}, {yi}, i = 1, . . . n, the matrix

(aij) such that yi =
∑

i aijxi is invertible over R.

We conclude this section by defining two fundamental rings.
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Definition 1.20. A ring is called Noetherian if every ascending chain

of ideals eventually stabilizes. This is often called the ascending chain

condition (ACC).

Definition 1.21. A ring is called Artinian if any descending chain of

ideals eventually stabilizes. Similarly, this is often called the descending

chain condition (DCC).

And we have the following

Theorem 1.22 (Akizuki). Every Artinian ring is Noetherian.

1.2. Localization of a Ring/Module.

Definition 1.23. Let S be a multiplicative submonoid (hereafter re-

ferred to as a multiplicative subset) of a ring R. Then, the localiza-

tion (or the ring of fractions) of R with respect to S is denoted either

S−1R or RS and is the set of equivalence classes of the form a/s with

a ∈ R, s ∈ S. Two elements a/s and b/t are considered equivalent if

r(at− sb) = 0 for some r ∈ S.

Addition is defined analogously to that of Q: r
s

+ r′

s′
= rs′+r′s

ss′
, and

multiplication as well: r
s
· r′
s′

= rr′

ss′
.

Taking note of the definition of a prime ideal, we see that for p ∈

SpecR that if a, b /∈ p, then ab /∈ p. Hence, the complement of a prime

ideal is a natural multiplicative subset, motivating our next definition.

Definition 1.24. Let p ∈ Spec(R). Then the localization of a ring R

at p, denoted Rp, is the ring S−1R with S = R\p.

It is easy to see that Rp is a local ring with maximal ideal pRp, since

any element r not belonging to p has inverse 1
r
. Indeed, the localization
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Rp induces a natural one to one correspondence between the prime

ideals contained in p and the prime ideals of Rp by considering the

natural inclusion r 7→ r/1.

Localization of an R-module M is defined in a similar fashion, with

our equivalence classes being of the form m/s, with m ∈M and s ∈ S.

We consider m/s = m′/s′ if there exists t ∈ S such that t(ms′−m′s) =

0. Addition is defined as expected, and multiplication by elements of R

is defined as rm
s

:= rm
s

. In this way, it is clear that S−1M ∼= S−1R⊗RM .

Definition 1.25. The support of a module M , denoted SuppM , is

defined as:

SuppM := {p ∈ SpecR : Mp 6= 0}

Localization tends to behave very well with respect to other ring/module

operations. For example, we have that S−1R/S−1I ∼= S−1(R/I) (on the

right we are actually localizing at the image of S in R/I). Using this, we

will use the notation k(p) to denote the residue field Rp/pRp
∼= (R/p)p

of the local ring Rp.

Localization of a ring also retains much of the structure of the original

ring R, as shown in the following

Theorem 1.26. Let R be a ring, S a multiplicative subset.

(1) All ideals of S−1R are of the form S−1I, where I is an ideal of

R.

(2) Every prime ideal of S−1A is of the form S−1p, where p is a

prime ideal disjoint from S.



8 KELLER VANDEBOGERT

Definition 1.27. An A-algebra B is a ring B equipped with a ring

homomorphism φ : A→ B.

If B is an A-algebra, then it has a natural A-module structure by

defining the action of A as a · b = φ(a)b. How does localization of A

affect B? Letting AS denote the localization with respect to S, we

want to make Bφ(S) into an AS-algebra. However, the action is obvious

in this case. Define

a

s
· b

φ(t)
:=

φ(a)b

φ(st)

(Of course, one would need to check that φ(S) remains multiplicative,

but this is a trivial exercise.) This leads into the more general result:

Theorem 1.28. Let A be a ring with S ⊂ A a multiplicative set.

Denote by ψ : A → AS by the natural inclusion. If B is an A-algebra

(with mapping φ) and there exists a homomorphism g : B → AS such

that ψ = g ◦ φ and such that for every b ∈ B there exists s ∈ S such

that φ(s) · b ∈ φ(A).

Then, AS = Bφ(S), and φ(S) consists precisely of the elements b ∈ B

such that g(b) is a unit in AS.

Using the above theorem, the most natural first situation is to con-

sider a ring A with a multiplicative subset S, and suppose there exists

some intermediate ring B such that A ⊂ B ⊂ AS. Then, the mappings

φ and g as above merely become inclusions, and we only need worry

about when there exist b ∈ B such that bs = 0 for some s ∈ S. We

immediately deduce
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Corollary 1.29. Suppose A ⊂ B ⊂ AS. If S contains no zero divisors,

then AS is also a ring of fractions for B. More precisely, AS = BS.

And the following are also consequences of 1.28.

Corollary 1.30. Let p ∈ SpecA. Then, if B satisfies the conditions

of 1.28, we have that Ap = BP , where P = pAp ∩B.

Corollary 1.31. Given two multiplicative sets S and T with S ⊂ T ,

we have that (AS)T ′ = AT (where T ′ denotes the image of T in AS).

We can now move on to some results which show how properties

holding in a family of localizations of an R-module M give valuable

information about M itself.

As a warm up, consider an element x such that the image of x in Mm

is 0 for every maximal ideal m. That means that for every maximal

ideal m, there exists some s ∈ mc such that sx = 0. Thus s ∈ Annx,

and since this holds for every m, we see that Ann(x) is not contained

in any maximal ideal so that Ann(x) = R =⇒ x = 0. We have proved

Theorem 1.32. Let R be a ring, M an R-module with x ∈ M . If

x = 0 in Mm for all maximal ideals m, then x = 0.

Using the above in combination with Nakayama’s Lemma yields

Theorem 1.33. Let R be a ring and M a finitely generated R-module.

If M ⊗R k(m) = 0 for every maximal ideal m, then M = 0.

And, more generally:

Theorem 1.34. Let f : A → B be a ring homomorphism with M a

finite B module. If M ⊗A k(p) = 0 for every p ∈ SpecA, then M = 0.


