NOTES IN COMMUTATIVE ALGEBRA: PART 1

KELLER VANDEBOGERT

1. Results/Definitions of Ring Theory

It is in this section that a collection of standard results and definitions in commutative ring theory will be presented. For the rest of this paper, any ring R will be assumed commutative with identity. We shall also use "=" and " \cong " (isomorphism) interchangeably, where the context should make the meaning clear.

1.1. The Basics.

Definition 1.1. A maximal ideal is any proper ideal that is not contained in any strictly larger proper ideal. The set of maximal ideals of a ring R is denoted m-Spec(R).

Definition 1.2. A prime ideal \mathfrak{p} is such that for any $a, b \in R, ab \in \mathfrak{p}$ implies that a or $b \in \mathfrak{p}$. The set of prime ideals of R is denoted Spec(R).

Definition 1.3. The radical of an ideal I, denoted \sqrt{I} , is the set of $a \in R$ such that $a^n \in I$ for some positive integer n.

Definition 1.4. A *primary* ideal \mathfrak{p} is an ideal such that if $ab \in \mathfrak{p}$ and $a \notin \mathfrak{p}$, then $b^n \in \mathfrak{p}$ for some positive integer n.

In particular, any maximal ideal is prime, and the radical of a primary ideal is prime.

Date: September 3, 2017.

KELLER VANDEBOGERT

Definition 1.5. The notation (R, \mathfrak{m}, k) shall denote the local ring R which has unique maximal ideal \mathfrak{m} and residue field $k := R/\mathfrak{m}$.

Example 1.6. Consider the set of smooth functions on a manifold M. Define an equivalence relation by considering f and g related at a point $p \in M$ if there exists a neighborhood U of p such that $f|_U = g|_U$. Then, let [f] denote the class of f, which is referred to as its germ. The set of germs at p is a commutative local ring, with [f] + [g] := [f + g], and [f][g] := [fg]. The maximal ideal is precisely the set of functions such that f(p) = 0.

Example 1.7. Given a commutative C^* -algebra A, set X = m-Spec(A). Then $A/J = \mathbb{C}$ for all $J \in X$ by the Gelfand-Mazur theorem. Hence there exists a naturally defined homomorphism

 $\pi_J: A \to \mathbb{C}$

Now, to each $a \in A$ associate a function \hat{a} on X defined by

$$\widehat{a}(J) = \pi_J(A)$$

Then \hat{a} is called the *Gelfand Transform* of $a \in A$. It is due to a result of Gelfand-Naimark that if A is unital, the Gelfand transform is an isomorphism of A onto the space of continuous functions on X.

Definition 1.8. The Jacobson radical J(R) is the intersection of all maximal ideals of the ring R.

The Jacobson radical has a nice characterization:

Proposition 1.9. If $a \in J(R)$, then 1+a is a unit. Moreover, $J(R) = \{x \in R \mid 1 + Rx \subset R^{\times}\}.$

Proof. Suppose first that $a \in J(R)$. Then, $1 + ax \notin \mathfrak{m}$ for any maximal ideal \mathfrak{m} , since else $1 = m - ax \in \mathfrak{m}$, a contradiction. Hence, (ax+b) = R so that r(1 + ax) = 1 for some $r \in R$.

Conversely, argue by contraposition. If $a \notin J(R)$, then we can find a maximal ideal \mathfrak{m} such that $a \notin \mathfrak{m}$ so that $(a) + \mathfrak{m} = R$. Thus there exists $r \in R$ and $m \in \mathfrak{m}$ such that ra + m = 1. But then $m = 1 - ra \in 1 + Ra$, and m is not a unit, so we are done.

Example 1.10. For any local ring (R, \mathfrak{m}, k) , $J(R) = \mathfrak{m}$, and the set of units R^{\times} is merely $R \setminus \mathfrak{m}$. Indeed, R is local if and only if $1 + \mathfrak{m}$ consists entirely of units.

Definition 1.11. An *R*-module *M* will be called finitely generated if there is a finite set $\{x_i\}$ such that given $x \in M$ there exists $r_i \in R$ for which $x = r_1x_1 + \cdots + r_nx_n$. The category of all finitely generated *R*-modules will be denoted by mod *R*.

Example 1.12. In the above, if R is a field, then we merely have a vector space of dimension $n < \infty$.

The following is used to prove a fundamental result in commutative algebra known as Nakayama's Lemma.

Theorem 1.13. Let M be a finitely generated R-module with \mathfrak{a} an ideal of R. If $\phi : M \to M$ is an R-module homomorphism such that $\phi(M) \subset \mathfrak{a}M$ then there exists a monic polynomial $p(x) \in \mathfrak{a}[x]$ such that $p(\phi) = 0$. More precisely, there exist $a_i \in \mathfrak{a}$ such that

(1.1)
$$\phi^n + a_1 \phi^{n-1} + \dots + a_{n-1} \phi + a_n = 0$$

KELLER VANDEBOGERT

Proof. Choose a generating set $\{x_1, \ldots, x_n\}$. Then, for each i, we have that $\phi(x_i) = \sum_j a_{ij} x_j$ where each $a_{ij} \in \mathfrak{a}$.

Subtracting, the above can be stated concisely as $\sum_{j} (\delta_{ij}\phi - a_{ij})x_j = 0$ (δ_{ij} denotes Kronecker delta). Then, if A is defined to be the matrix with entries ($\delta_{ij}\phi - a_{ij}$) as the i, j entry, we see that Av = 0 for v the column matrix of generators (x_i) .

Multiplying by the adjugate of A, we find that $\det(A)x_i = 0$ for each i and hence $\det(A)M = 0$. Employing the standard Laplace expansion for $\det(A)$ yields our monic polynomial, so we are done.

Remark 1.14. We can actually conclude further by noting the form of our determinant that $a_i \in \mathfrak{a}^i$ where the a_i are as in (1.1).

Lemma 1.15 (Nakayama's Lemma). Let M be a finitely generated Rmodule and I an ideal of R such that M = IM. Then there exists $a \in I$ such that (1 + a)M = 0.

Proof. Using the previous theorem, our ϕ is simply the identity mapping. Then, we find that $M + (a_1 + \ldots a_n)M = 0$. Setting $a_1 + \ldots a_n = a \in I$, we have that (1 + a)M = 0.

Example 1.16. If $I \subset J(R)$ in the above, then (1 + a) is a unit and we conclude further that M = 0.

Example 1.17. Suppose again that $I \subset J(R)$, but assume that M = N + IM for some submodule N of M. Then, we see that M/N = I(M/N), and employing the previous example, M/N = 0 so that M = N.

Consider the following construction: given an R-module M over a local ring (R, \mathfrak{m}, k) , take the quotient $M/\mathfrak{m}M \cong k \otimes M$. As a module over a field, this is actually a vector space. Choose a basis $\{\overline{x}_1, \ldots, \overline{x}_n\}$ of this vector space and consider the preimage $x_i \in M$ of each \overline{x}_i with respect to the canonical projection. Then it is obvious that any proper subset of this set of generators cannot generate M (since else it would have to generate the vector space $k \otimes M$). Also, the set $X = \{x_1, \ldots, x_n\}$ generates all of M since for any $x \in M$ its image in $M/\mathfrak{m}M$ is in the span of our $\{\overline{x}_i\}$. Taking the preimage of this linear combination, we find that $x = r_1x_1 + \cdots + r_nx_n$ for some $r_i \in R$. This motivates the following:

Definition 1.18. Let X be a generating set for an R-module M. If no proper subset of X generates M, then X is called a minimal basis.

In general, minimal bases need not contain the same number of elements. However, by our above construction, we have the following result for local rings:

Theorem 1.19. Let (R, \mathfrak{m}, k) be a local ring.

- For any basis of M/mM, its preimage will be a minimal basis of M.
- (2) Conversely, every minimal basis is obtained in this manner.
- (3) Given any two minimal bases $\{x_i\}, \{y_i\}, i = 1, ..., n$, the matrix (a_{ij}) such that $y_i = \sum_i a_{ij} x_i$ is invertible over R.

We conclude this section by defining two fundamental rings.

Definition 1.20. A ring is called *Noetherian* if every ascending chain of ideals eventually stabilizes. This is often called the ascending chain condition (ACC).

Definition 1.21. A ring is called *Artinian* if any descending chain of ideals eventually stabilizes. Similarly, this is often called the descending chain condition (DCC).

And we have the following

Theorem 1.22 (Akizuki). Every Artinian ring is Noetherian.

1.2. Localization of a Ring/Module.

Definition 1.23. Let S be a multiplicative submonoid (hereafter referred to as a multiplicative subset) of a ring R. Then, the localization (or the ring of fractions) of R with respect to S is denoted either $S^{-1}R$ or R_S and is the set of equivalence classes of the form a/s with $a \in R, s \in S$. Two elements a/s and b/t are considered equivalent if r(at - sb) = 0 for some $r \in S$.

Addition is defined analogously to that of \mathbb{Q} : $\frac{r}{s} + \frac{r'}{s'} = \frac{rs' + r's}{ss'}$, and multiplication as well: $\frac{r}{s} \cdot \frac{r'}{s'} = \frac{rr'}{ss'}$.

Taking note of the definition of a prime ideal, we see that for $\mathfrak{p} \in$ Spec R that if $a, b \notin \mathfrak{p}$, then $ab \notin \mathfrak{p}$. Hence, the complement of a prime ideal is a natural multiplicative subset, motivating our next definition.

Definition 1.24. Let $\mathfrak{p} \in \operatorname{Spec}(R)$. Then the localization of a ring R at \mathfrak{p} , denoted $R_{\mathfrak{p}}$, is the ring $S^{-1}R$ with $S = R \setminus \mathfrak{p}$.

It is easy to see that $R_{\mathfrak{p}}$ is a local ring with maximal ideal $\mathfrak{p}R_{\mathfrak{p}}$, since any element r not belonging to \mathfrak{p} has inverse $\frac{1}{r}$. Indeed, the localization $R_{\mathfrak{p}}$ induces a natural one to one correspondence between the prime ideals contained in p and the prime ideals of $R_{\mathfrak{p}}$ by considering the natural inclusion $r \mapsto r/1$.

Localization of an *R*-module *M* is defined in a similar fashion, with our equivalence classes being of the form m/s, with $m \in M$ and $s \in S$. We consider m/s = m'/s' if there exists $t \in S$ such that t(ms' - m's) =0. Addition is defined as expected, and multiplication by elements of *R* is defined as $r\frac{m}{s} := \frac{rm}{s}$. In this way, it is clear that $S^{-1}M \cong S^{-1}R \otimes_R M$.

Definition 1.25. The support of a module M, denoted Supp M, is defined as:

$$\operatorname{Supp} M := \{ \mathfrak{p} \in \operatorname{Spec} R : M_{\mathfrak{p}} \neq 0 \}$$

Localization tends to behave very well with respect to other ring/module operations. For example, we have that $S^{-1}R/S^{-1}I \cong S^{-1}(R/I)$ (on the right we are actually localizing at the image of S in R/I). Using this, we will use the notation $k(\mathfrak{p})$ to denote the residue field $R_{\mathfrak{p}}/\mathfrak{p}R_p \cong (R/\mathfrak{p})_{\mathfrak{p}}$ of the local ring $R_{\mathfrak{p}}$.

Localization of a ring also retains much of the structure of the original ring R, as shown in the following

Theorem 1.26. Let R be a ring, S a multiplicative subset.

- All ideals of S⁻¹R are of the form S⁻¹I, where I is an ideal of R.
- (2) Every prime ideal of S⁻¹A is of the form S⁻¹p, where p is a prime ideal disjoint from S.

Definition 1.27. An *A*-algebra *B* is a ring *B* equipped with a ring homomorphism $\phi : A \to B$.

If B is an A-algebra, then it has a natural A-module structure by defining the action of A as $a \cdot b = \phi(a)b$. How does localization of A affect B? Letting A_S denote the localization with respect to S, we want to make $B_{\phi(S)}$ into an A_S -algebra. However, the action is obvious in this case. Define

$$\frac{a}{s} \cdot \frac{b}{\phi(t)} := \frac{\phi(a)b}{\phi(st)}$$

(Of course, one would need to check that $\phi(S)$ remains multiplicative, but this is a trivial exercise.) This leads into the more general result:

Theorem 1.28. Let A be a ring with $S \subset A$ a multiplicative set. Denote by $\psi : A \to A_S$ by the natural inclusion. If B is an A-algebra (with mapping ϕ) and there exists a homomorphism $g : B \to A_S$ such that $\psi = g \circ \phi$ and such that for every $b \in B$ there exists $s \in S$ such that $\phi(s) \cdot b \in \phi(A)$.

Then, $A_S = B_{\phi(S)}$, and $\phi(S)$ consists precisely of the elements $b \in B$ such that g(b) is a unit in A_S .

Using the above theorem, the most natural first situation is to consider a ring A with a multiplicative subset S, and suppose there exists some intermediate ring B such that $A \subset B \subset A_S$. Then, the mappings ϕ and g as above merely become inclusions, and we only need worry about when there exist $b \in B$ such that bs = 0 for some $s \in S$. We immediately deduce **Corollary 1.29.** Suppose $A \subset B \subset A_S$. If S contains no zero divisors, then A_S is also a ring of fractions for B. More precisely, $A_S = B_S$.

And the following are also consequences of 1.28.

Corollary 1.30. Let $\mathfrak{p} \in \operatorname{Spec} A$. Then, if B satisfies the conditions of 1.28, we have that $A_{\mathfrak{p}} = B_P$, where $P = \mathfrak{p}A_{\mathfrak{p}} \cap B$.

Corollary 1.31. Given two multiplicative sets S and T with $S \subset T$, we have that $(A_S)_{T'} = A_T$ (where T' denotes the image of T in A_S).

We can now move on to some results which show how properties holding in a family of localizations of an R-module M give valuable information about M itself.

As a warm up, consider an element x such that the image of x in $M_{\mathfrak{m}}$ is 0 for every maximal ideal \mathfrak{m} . That means that for every maximal ideal \mathfrak{m} , there exists some $s \in \mathfrak{m}^c$ such that sx = 0. Thus $s \in \operatorname{Ann} x$, and since this holds for every \mathfrak{m} , we see that $\operatorname{Ann}(x)$ is not contained in any maximal ideal so that $\operatorname{Ann}(x) = R \implies x = 0$. We have proved

Theorem 1.32. Let R be a ring, M an R-module with $x \in M$. If x = 0 in $M_{\mathfrak{m}}$ for all maximal ideals \mathfrak{m} , then x = 0.

Using the above in combination with Nakayama's Lemma yields

Theorem 1.33. Let R be a ring and M a finitely generated R-module. If $M \otimes_R k(\mathfrak{m}) = 0$ for every maximal ideal \mathfrak{m} , then M = 0.

And, more generally:

Theorem 1.34. Let $f : A \to B$ be a ring homomorphism with M a finite B module. If $M \otimes_A k(\mathfrak{p}) = 0$ for every $\mathfrak{p} \in \operatorname{Spec} A$, then M = 0.