

JANUARY 2014 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Let $\epsilon > 0$. Give $\mathbb{R}_{\geq 0}$ the induced topology and consider the open sets

$$f_n^{-1}([0, \epsilon))$$

Note that these sets are open by continuity. Since $f_n \rightarrow 0$ pointwise, we have that

$$\bigcup_{n \geq 1} f_n^{-1}([0, \epsilon))$$

is an open cover of E . Since E is compact, we may select a finite subcover $\{f_{n_1}^{-1}([0, \epsilon)), \dots, f_{n_k}^{-1}([0, \epsilon))\}$.

Observe now that since the f_n are monotone decreasing, $f_n^{-1}([0, \epsilon)) \subset f_{n+1}^{-1}([0, \epsilon))$, in which case we see that

$$f_{n_k}^{-1}([0, \epsilon)) = E$$

And, for all $\ell \geq n_k$,

$$f_\ell^{-1}([0, \epsilon)) = E$$

That is, for all $\ell > n_k$, $f_\ell(x) < \epsilon$ for every $x \in E$, so that f_n converges uniformly to 0.

Date: January 6, 2018.

2. PROBLEM 2

Observe first that

$$|e^{z^2}| = e^{\operatorname{Re}(z^2)}$$

Then the problem says that

$$\frac{f(z)}{e^{z^2}}$$

is bounded. Since $f(z)$ and e^{z^2} are both entire, Liouville's theorem gives that the above quotient must be a constant. That is,

$$\frac{f(z)}{e^{z^2}} = a$$

So that $f(z) = ae^{z^2}$.

3. PROBLEM 3

We see that the only singularity in the contour $|z-1| = 1$ is at $z = 1$.

By Cauchy's Residue formula,

$$\int_{|z-1|=1} \frac{e^z}{z^4 - 1} dz = 2\pi i \cdot \lim_{z \rightarrow 1} \frac{e^z}{1 + z + z^2 + z^3} = \frac{e\pi i}{2}$$

4. PROBLEM 4

Define $g(x) := f(x) - (x - 1)$. By the problem's assumptions,

$$\int_0^1 g(x)x^n dx = 0$$

for all n . We then see (by linearity of integration) that for all $\ell \in \mathbb{R}[x]$,

$$\int_0^1 g(x)\ell(x) dx = 0$$

Let $\epsilon > 0$. By the Stone-Weierstrass theorem, we may find $p \in \mathbb{R}[x]$ such that

$$\|g - p\|_1 < \frac{\epsilon}{1 + \|g\|_\infty}$$

Note that $\|g\|_\infty < \infty$ since g is continuous on a compact set. We then see:

$$\begin{aligned} \int_0^1 g^2(x)dx &= \int_0^1 g(x)(g(x) - p(x))dx \\ &\leq \|g\|_\infty \|g - p\|_1 \quad (\text{Hölder's}) \\ &< \epsilon \end{aligned}$$

As $\epsilon > 0$ is arbitrary, we deduce that $\int_0^1 g^2(x)dx = 0$. Since g is continuous, this is possible if and only if $g \equiv 0$; that is, $f(x) = 1 - x$, so that $1 - x$ is the only continuous function on $[0, 1]$ satisfying

$$\int_0^1 f(x)x^n dx = \frac{1}{(n+1)(n+2)}$$

for all n .

5. PROBLEM 5

Define $A := \{x : \lambda(E_x) \geq 1/2\}$. Then, $\lambda(A) \geq 3/4$ by assumption; we see:

$$\begin{aligned} \lambda \times \lambda(E) &= \int_E d\lambda \times \lambda(x, y) \\ &= \int_{[0,1]} \int_{E_x} d\lambda(y) d\lambda(x) \\ &\geq \int_A \int_{E_x} d\lambda(y) d\lambda(x) \\ &\geq \frac{1}{2} \int_A d\lambda(x) \\ &\geq \frac{1}{2} \frac{3}{4} = \frac{3}{8} \end{aligned}$$

6. PROBLEM 6

Define $g_n := \inf_{k \geq n} f_n$, where f_n is our sequence of functions. Obviously $g_n \leq f_n$, so that

$$\int_E g_n \leq \int_E f_n$$

Since this in fact holds for all n , we have the stronger inequality:

$$\int_E g_n \leq \inf_{k \geq n} \int_E f_k$$

Note that g_n is an increasing sequence of functions. By Lebesgue's monotone convergence theorem,

$$\lim_{n \rightarrow \infty} \int_E g_n = \int_E \lim_{n \rightarrow \infty} g_n$$

Taking the limit in our inequality then yields:

$$\int_E \liminf_{n \rightarrow \infty} f_n \leq \liminf_{n \rightarrow \infty} \int_E f_n$$

And Fatou's Lemma is proved.

7. PROBLEM 7

Let $\epsilon > 0$. We may find a smooth $f_c \in L_1$ with compact support such that $\|f - f_c\|_1 \leq \epsilon/2$ by density of smooth, compactly supported functions.

Now, consider the difference $\|f_n - f_c(1 - 1/n)\|_1$. Making the change of variable $z = x - 1/n$ in this difference, we see

$$\|f_n - f_c(1 - 1/n)\|_p = \|f - f_c\|_p < \epsilon/2$$

Now consider $\|f_c(x - 1/n) - f_c\|_p$ and suppose that $\text{Supp } f_c \subset [-M, M]$. As f_c is smooth, in particular it is continuous on a compact interval, hence bounded. Then, note that $|f_c(x - 1/n) - f_c(x)| \leq 2\|f\|_\infty$. By the dominated convergence theorem and continuity,

$$\begin{aligned} \lim_{n \rightarrow \infty} \int_{-M}^M |f_c(x - 1/n) - f_c(x)| dx &= \int_{-M}^M \lim_{n \rightarrow \infty} |f_c(x - 1/n) - f_c(x)| dx \\ &= \int_{-M}^M |f_c(x) - f_c(x)| dx \\ &= 0 \end{aligned}$$

Whence

$$\begin{aligned}
 \lim_{n \rightarrow \infty} \|f(x - 1/n) - f\|_1 &\leq \lim_{n \rightarrow \infty} \|f - f_c\|_1 + \\
 &\quad \|f_c(x - 1/n) - f_c(x)\|_1 + \|f_c(x - 1/n) - f(x - 1/n)\|_1 \\
 &< \epsilon/2 + \lim_{n \rightarrow \infty} \|f_c(x - 1/n) - f_c(x)\|_1 + \epsilon/2 \\
 &= \epsilon
 \end{aligned}$$

As $\epsilon > 0$ is arbitrary, we see that

$$\lim_{n \rightarrow \infty} \|f(x - 1/n) - f(x)\|_1 = 0$$

as desired.

8. PROBLEM 8

Let $\epsilon > 0$. Since f is integrable on \mathbb{R} , we may find $N \in \mathbb{N}$ such that

$$\int_{\mathbb{R} \setminus [-N, N]} f d\lambda < \epsilon$$

Then, since $[-N, N]$ is closed and compact, by assumption $\int_{[-N, N]} f d\lambda = 0$; then

$$\begin{aligned}
 \int_{\mathbb{R}} f d\lambda &= \int_{\mathbb{R} \setminus [-N, N]} f d\lambda + \int_{[-N, N]} f d\lambda \\
 &< \epsilon
 \end{aligned}$$

As $\epsilon > 0$ is arbitrary, we conclude that $\int_{\mathbb{R}} f d\lambda = 0$, as desired.

9. PROBLEM 9

Recall first that if we may write $f(x) - f(0) = \int_0^x f' d\mu$, then f is absolutely continuous. We also have the standard inequality that holds in general:

$$\int_a^b f' d\mu \leq f(b) - f(a)$$

Now we may proceed with the proof. By Lebegue's theorem on monotone functions, we have that f' exists almost everywhere. Let $x \in (0, 1)$:

$$\begin{aligned} 0 &= f(1) - f(0) - \int_0^1 f' d\mu \\ &= f(1) - f(x) - \int_x^1 f' d\mu + f(x) - f(0) - \int_0^x f' d\mu \end{aligned}$$

By the above, however,

$$f(1) - f(x) - \int_x^1 f' d\mu \geq 0, \quad f(x) - f(0) - \int_0^x f' d\mu \geq 0$$

In which case we have the sum of two nonnegative functions being equal to 0; this is only possible if both functions are themselves identically 0.

Thus we deduce

$$f(x) - f(0) = \int_0^x f' d\mu$$

And f is absolutely continuous, as contended.

10. PROBLEM 10

(a). False. Let $\epsilon < 1$ and set

$$E := \bigcup_{q \in \mathbb{Q}} B_{\epsilon/2^{n+1}}(q)$$

This is open as the union of open sets, in which case we deduce that E^c is a closed subset of $[0, 1]$, and is hence compact. Also, by construction, $\mathbb{Q} \subset E$ and $\mu(E) \leq \epsilon$, in which case $E^c \subset \mathbb{Q}^c$, and, $\mu(E^c) \geq 1 - \epsilon > 0$.

Thus we have constructed a compact subset of the irrationals with strictly positive measure, in which case the statement must be false.

(b). False. Set $f_n(x) := \sin(2n^2 x) dx$. By construction,

$$\|f_n\|_{L^1} \leq \frac{1}{n^2}$$

However, $\lim_{n \rightarrow \infty} f_n$ does not exist, in which case $f_n \not\rightarrow 0$.

(c). True. Set $f(z) := 0$. Now, assuming the problem wanted a non-constant function, the statement is still true. Set $f(z) := \sin(\pi z)$.

(d). False. Since f is Lipschitz, it is also absolutely continuous. We may then write

$$f(x) = f(0) + \int_0^x f' d\mu$$

Since $f' = 0$ a.e, we find $f(x) = f(0)$ for all x ; that is, f is constant.

(e). False. By the Schwarz Lemma, if $|f(z)| \leq 3$, we must also have $|f'(0)| \leq 3$.