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KELLER VANDEBOGERT

1. Problem 1

Let ε > 0. Give R>0 the induced topology and consider the open

sets

f−1n ([0, ε))

Note that these sets are open by continuity. Since fn → 0 pointwise,

we have that ⋃
n>1

f−1n ([0, ε))

is an open cover of E. Since E is compact, we may select a finite

subcover {f−1n1
([0, ε)), . . . , f−1nk

([0, ε))}.

Observe now that since the fn are monotone decreasing, f−1n ([0, ε)) ⊂

f−1n+1([0, ε)), in which case we see that

f−1nk
([0, ε)) = E

And, for all ` > nk,

f−1` ([0, ε)) = E

That is, for all ` > nk, f`(x) < ε for every x ∈ E, so that fn converges

uniformly to 0.
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2. Problem 2

Observe first that ∣∣ez2∣∣ = eRe(z2)

Then the problem says that

f(z)

ez2

is bounded. Since f(z) and ez
2

are both entire, Liouville’s theorem

gives that the above quotient must be a constant. That is,

f(z)

ez2
= a

So that f(z) = aez
2
.

3. Problem 3

We see that the only singularity in the contour |z−1| = 1 is at z = 1.

By Cauchy’s Residue formula,ˆ
|z−1|=1

ez

z4 − 1
dz = 2πi · lim

z→1

ez

1 + z + z2 + z3
=
eπi

2

4. Problem 4

Define g(x) := f(x)− (x− 1). By the problem’s assumptions,
ˆ 1

0

g(x)xndx = 0

for all n. We then see (by linearity of integration) that for all ` ∈ R[x],
ˆ 1

0

g(x)`(x)dx = 0

Let ε > 0. By the Stone-Weierstrass theorem, we may find p ∈ R[x]

such that

||g − p||1 <
ε

1 + ||g||∞
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Note that ||g||∞ <∞ since g is continuous on a compact set. We then

see: ˆ 1

0

g2(x)dx =

ˆ 1

0

g(x)
(
g(x)− p(x)

)
dx

6 ||g||∞||g − p||1 (Hölder’s)

< ε

As ε > 0 is arbitrary, we deduce that
´ 1
0
g2(x)dx = 0. Since g is

continuous, this is possible if and only if g ≡ 0; that is, f(x) = 1− x,

so that 1− x is the only continuous function on [0, 1] satisfyingˆ 1

0

f(x)xndx =
1

(n+ 1)(n+ 2)

for all n.

5. Problem 5

Define A := {x : λ(Ex) > 1/2}. Then, λ(A) > 3/4 by assumption;

we see:

λ× λ(E) =

ˆ
E

dλ× λ(x, y)

=

ˆ
[0,1]

ˆ
Ex

dλ(y)dλ(x)

>
ˆ
A

ˆ
Ex

dλ(y)dλ(x)

>
1

2

ˆ
A

dλ(x)

>
1

2

3

4
=

3

8

6. Problem 6

Define gn := infk>n fn, where fn is our sequence of functions. Obvi-

ously gn 6 fn, so that ˆ
E

gn 6
ˆ
E

fn
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Since this in fact holds for all n, we have the stronger inequality:ˆ
E

gn 6 inf
k>n

ˆ
E

fk

Note that gn is an increasing sequence of functions. By Lebesgue’s

monotone convergence theorem,

lim
n→∞

ˆ
E

gn =

ˆ
E

lim
n→∞

gn

Taking the limit in our inequality then yields:ˆ
E

lim inf
n→∞

fn 6 lim inf
n→∞

ˆ
E

fn

And Fatou’s Lemma is proved.

7. Problem 7

Let ε > 0. We may find a smooth fc ∈ L1 with compact support

such that ||f − fc||1 6 ε/2 by density of smooth, compactly supported

functions.

Now, consider the difference ||fn−fc(1−1/n)||1. Making the change

of variable z = x− 1/n in this difference, we see

||fn − fc(1− 1/n)||p = ||f − fc||p < ε/2

Now consider ||fc(x−1/n)−fc||p and suppose that Supp fc ⊂ [−M,M ].

As fc is smooth, in particular it is continuous on a compact interval,

hence bounded. Then, note that |fc(x − 1/n) − fc(x)| 6 2||f ||∞. By

the dominated convergence theorem and continuity,

lim
n→∞

ˆ M

−M
|fc(x− 1/n)− fc(x)|dx =

ˆ M

−M
lim
n→∞

|fc(x− 1/n)− fc(x)|dx

=

ˆ M

−M
|fc(x)− fc(x)|dx

= 0
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Whence

lim
n→∞

||f(x− 1/n)− f ||1 6 lim
n→∞

||f − fc||1+

||fc(x− 1/n)− fc(x)||1 + ||fc(x− 1/n)− f(x− 1/n)||1

< ε/2 + lim
n→∞

||fc(x− 1/n)− fc(x)||1 + ε/2

= ε

As ε > 0 is arbitrary, we see that

lim
n→∞

||f(x− 1/n)− f(x)||1 = 0

as desired.

8. Problem 8

Let ε > 0. Since f is integrable on R, we may find N ∈ N such that

ˆ
R\[−N,N ]

fdλ < ε

Then, since [−N,N ] is closed an compact, by assumption
´
[−N,N ]

fdλ =

0; then ˆ
R
fdλ =

ˆ
R\[−N,N ]fdλ+

ˆ
[−N,N ]

fdλ

< ε

As ε > 0 is arbitrary, we conclude that
´
R fdλ = 0, as desired.

9. Problem 9

Recall first that if we may write f(x) − f(0) =
´ x
0
f ′dµ, then f is

absolutely continuous. We also have the standard inequality that holds

in general: ˆ b

a

f ′dµ 6 f(b)− f(a)
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Now we may proceed with the proof. By Lebegue’s theorem on mono-

tone functions, we have that f ′ exists almost everywhere. Let x ∈ (0, 1):

0 = f(1)− f(0)−
ˆ 1

0

f ′dµ

= f(1)− f(x)−
ˆ 1

x

f ′dµ+ f(x)− f(0)−
ˆ x

0

f ′dµ

By the above, however,

f(1)− f(x)−
ˆ 1

x

f ′dµ > 0, f(x)− f(0)−
ˆ x

0

f ′dµ > 0

In which case we have the sum of two nonnegative functions being equal

to 0; this is only psosible if both functions are themselves identically 0.

Thus we deduce

f(x)− f(0) =

ˆ x

0

f ′dµ

And f is absolutely continuous, as contended.

10. Problem 10

(a). False. Let ε < 1 and set

E :=
⋃
q∈Q

Bε/2n+1(q)

This is open as the union of open sets, in which case we deduce that Ec

is a closed subset of [0, 1], and is hence compact. Also, by construction,

Q ⊂ E and µ(E) 6 ε, in which case Ec ⊂ Qc, and, µ(Ec) > 1− ε > 0.

Thus we have constructed a compact subset of the irrationals with

strictly positive measure, in which case the statement must be false.

(b). False. Set fn(x) := sin(2n2x)dx. By construction,

||fn||L1 6
1

n2

However, limn→∞ fn does not exist, in which case fn 6→ 0.
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(c). True. Set f(z) := 0. Now, assuming the problem wanted a non-

constant function, the statement is still true. Set f(z) := sin(πz).

(d). False. Since f is Lipschitz, it is also absolutely continuous. We

may then write

f(x) = f(0) +

ˆ x

0

f ′dµ

Since f ′ = 0 a.e, we find f(x) = f(0) for all x; that is, f is constant.

(e). False. By the Schwarz Lemma, if |f(z)| 6 3, we must also have

|f ′(0)| 6 3.


