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1. Problem 1

Note that kk > k! for all k > 0, so that by the comparison test

∞∑
k=!

k−k 6
∞∑
k=1

1

k!
= e− 1

In which case sn is convergent, hence Cauchy.

2. Problem 2

Let x0 ∈ X and define xn inductively by xn = Ω(xn−1). Then, we

can show that (xn)n∈N is Cauchy as for m > n,

ρ(xn, xm) 6 ρ(xm, xm−1) + · · ·+ ρ(xn+1, xn)

6
(
λm−1 + λm−2 + · · ·+ λn

)
ρ(x1, x0)

=
λn − λm

1− λ
ρ(x1, x0)→ 0 as m, n→∞

By completeness of X, we deduce that xn → x ∈ X. Now, consider

Ω(x); we want to show that x must be a fixed point:

ρ(Ω(x), x) 6 ρ(x, xn+1) + ρ(xn+1,Ω(x))

6 ρ(x, xn+1) + λρ(xn, x)

Letting n→∞ on the right, this must tend to 0, in which case

ρ(x,Ω(x)) = 0
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That is, Ω(x) = x. Lastly, it remains to show uniqueness. Suppose

then that x and y are two fixed points of Ω; then:

ρ(x, y) = ρ(Ω(x),Ω(y)) 6 λρ(x, y)

Since λ < 1, we must have ρ(x, y) = 0, so that x = y.

3. Problem 3

Yes, this is uniform. Let ε > 0; since xn

ex
→ 0 as x→∞, there exists

M ∈ R+ such that xn

ex
< ε for all x > M . As xn

(2n)!
< xm

(2m)!
for all n > m,

we see that for all m > n, x > M ,

xm

(2m)!
<

xn

(2n)!
<

ε

(2n)!
< ε

Similarly, when x < M , we have that xn

(2n)!
< Mn

(2n)!
→ 0, so that we may

find N ∈ N such that for all n > N and x < M ,

xne−x

(2n)!
6

xn

(2n)!
< ε

So that, choosing n > N ,

xne−x

(2n)!
< ε

whence xne−x

(2n)!
→ 0 uniformly on [0,∞).

4. Problem 4

Note that γ only encloses the pole of order 1 at the point z = −1.

Computing residues,

Res
( 1

1 + z3
,−1

)
= lim

z→−1

1 + z

1 + z3

= lim
z→−1

1

1− z + z2
=

1

3

By Cauchy’s residue theorem, we seeˆ
γ

1

1 + z3
dz =

2πi

3
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5. Problem 5

Observe thatˆ b

a

f(x)2dx =

ˆ b

a

f(x)2/3 · f(x)1/3dx

6
(ˆ b

a

f(x)dx
)2/3( ˆ b

a

f(x)4dx
)2/3

Taking square roots of the above, we see

||f ||2 6 ||f ||1/31 · ||f ||
2/3
4

As contended.

6. Problem 6

Note first that since |fn| 6 g for all n, letting n→∞ gives |f | 6 |g|

as well. By Fatou’s lemma, we see

0 6
ˆ
E

2p − lim
n→∞

|fn − f |pdµ

6 lim inf
n→∞

(ˆ
E

2pg −
ˆ
E

|fn − f |dµ
)

=

ˆ
X

2pg − lim sup
n→∞

ˆ
E

|fn − f |pdµ

=⇒ lim sup
n→∞

ˆ
E

|fn − f |pdµ 6 0

So,

||fn − f ||p → 0

and, by the triangle inequality we see ||fn||p → ||f ||p, as desired.

7. Problem 7

Consider

f(x) :=

ˆ x

0

χA(x)dx

This function is absolutely continuous by absolute continuity of in-

tegration, and, in particular, by the intermediate value property of
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continuous functions, there exists y ∈ [0, 1] such that f(y) = b. That

is, µ(A ∩ [0, y]) = b.

Obviously A∩ [0, y] is measurable; it remains to see that there exists

a closed set B ⊂ A with µ(B) = A. Choose ε = a− b. By definition of

Lebesgue measure we may find a closed set F with A ∩ [0, y] ⊂ F ⊂ A

such that µ(A\F ) 6 ε. However, this implies

µ(A\(A ∩ [0, y])) = a− b 6 µ(A\F ) 6 a− b

In which case µ(A\F ) = a− b, so that µ(F ) = b, as desired.

8. Problem 8

Note that fnχE 6 supn fnχE 6 supn fn ∈ L1(R), where supn fn ∈

L1(R) by assumption. By Lebesgue’s dominated convergence theorem,
ˆ
E

fndµ =

ˆ
fnχEdµ→

ˆ
fχEdµ =

ˆ
E

fdµ

as desired.

9. Problem 9

Since [a, b] is compact, m := infx∈[a,b] |f(x)| > 0. As f has bounded

total variation, we know

sup
P partition

N∑
k=1

|f(bk)− f(ak)| <∞

so that

sup
P partition

N∑
k=1

∣∣∣ 1

f(bk)
− 1

f(ak)

∣∣∣ 6 1

m2
sup

P partition

N∑
k=1

|f(bk)− f(ak)|

<∞

So that 1/f also has bounded variation.
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10. Problem 10

By absolute continuity,

|f(b)− f(a)| =
∣∣∣ ˆ b

a

f ′(t)dt
∣∣∣

so we compute:

|f(b)− f(a)| =
∣∣∣ ˆ b

a

f ′(t)dt
∣∣∣

6
ˆ b

a

|f ′(t)|dt

6 ||f ′||p|b− a|1−1/p (Hölder’s)

So that C = ||f ′||p.


