

JANUARY 2008 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Note that $k^k > k!$ for all $k > 0$, so that by the comparison test

$$\sum_{k=1}^{\infty} k^{-k} \leq \sum_{k=1}^{\infty} \frac{1}{k!} = e - 1$$

In which case s_n is convergent, hence Cauchy.

2. PROBLEM 2

Let $x_0 \in X$ and define x_n inductively by $x_n = \Omega(x_{n-1})$. Then, we can show that $(x_n)_{n \in \mathbb{N}}$ is Cauchy as for $m > n$,

$$\begin{aligned} \rho(x_n, x_m) &\leq \rho(x_m, x_{m-1}) + \cdots + \rho(x_{n+1}, x_n) \\ &\leq (\lambda^{m-1} + \lambda^{m-2} + \cdots + \lambda^n) \rho(x_1, x_0) \\ &= \frac{\lambda^n - \lambda^m}{1 - \lambda} \rho(x_1, x_0) \rightarrow 0 \text{ as } m, n \rightarrow \infty \end{aligned}$$

By completeness of X , we deduce that $x_n \rightarrow x \in X$. Now, consider $\Omega(x)$; we want to show that x must be a fixed point:

$$\begin{aligned} \rho(\Omega(x), x) &\leq \rho(x, x_{n+1}) + \rho(x_{n+1}, \Omega(x)) \\ &\leq \rho(x, x_{n+1}) + \lambda \rho(x_n, x) \end{aligned}$$

Letting $n \rightarrow \infty$ on the right, this must tend to 0, in which case

$$\rho(x, \Omega(x)) = 0$$

Date: December 26, 2017.

That is, $\Omega(x) = x$. Lastly, it remains to show uniqueness. Suppose then that x and y are two fixed points of Ω ; then:

$$\rho(x, y) = \rho(\Omega(x), \Omega(y)) \leq \lambda \rho(x, y)$$

Since $\lambda < 1$, we must have $\rho(x, y) = 0$, so that $x = y$.

3. PROBLEM 3

Yes, this is uniform. Let $\epsilon > 0$; since $\frac{x^n}{e^x} \rightarrow 0$ as $x \rightarrow \infty$, there exists $M \in \mathbb{R}_+$ such that $\frac{x^n}{e^x} < \epsilon$ for all $x > M$. As $\frac{x^n}{(2n)!} < \frac{x^m}{(2m)!}$ for all $n > m$, we see that for all $m > n$, $x > M$,

$$\frac{x^m}{(2m)!} < \frac{x^n}{(2n)!} < \frac{\epsilon}{(2n)!} < \epsilon$$

Similarly, when $x < M$, we have that $\frac{x^n}{(2n)!} < \frac{M^n}{(2n)!} \rightarrow 0$, so that we may find $N \in \mathbb{N}$ such that for all $n > N$ and $x < M$,

$$\frac{x^n e^{-x}}{(2n)!} \leq \frac{x^n}{(2n)!} < \epsilon$$

So that, choosing $n > N$,

$$\frac{x^n e^{-x}}{(2n)!} < \epsilon$$

whence $\frac{x^n e^{-x}}{(2n)!} \rightarrow 0$ uniformly on $[0, \infty)$.

4. PROBLEM 4

Note that γ only encloses the pole of order 1 at the point $z = -1$.

Computing residues,

$$\begin{aligned} \text{Res}\left(\frac{1}{1+z^3}, -1\right) &= \lim_{z \rightarrow -1} \frac{1+z}{1+z^3} \\ &= \lim_{z \rightarrow -1} \frac{1}{1-z+z^2} = \frac{1}{3} \end{aligned}$$

By Cauchy's residue theorem, we see

$$\int_{\gamma} \frac{1}{1+z^3} dz = \frac{2\pi i}{3}$$

5. PROBLEM 5

Observe that

$$\begin{aligned} \int_a^b f(x)^2 dx &= \int_a^b f(x)^{2/3} \cdot f(x)^{1/3} dx \\ &\leq \left(\int_a^b f(x) dx \right)^{2/3} \left(\int_a^b f(x)^4 dx \right)^{2/3} \end{aligned}$$

Taking square roots of the above, we see

$$\|f\|_2 \leq \|f\|_1^{1/3} \cdot \|f\|_4^{2/3}$$

As contended.

6. PROBLEM 6

Note first that since $|f_n| \leq g$ for all n , letting $n \rightarrow \infty$ gives $|f| \leq |g|$ as well. By Fatou's lemma, we see

$$\begin{aligned} 0 &\leq \int_E 2^p - \lim_{n \rightarrow \infty} |f_n - f|^p d\mu \\ &\leq \liminf_{n \rightarrow \infty} \left(\int_E 2^p g - \int_E |f_n - f| d\mu \right) \\ &= \int_X 2^p g - \limsup_{n \rightarrow \infty} \int_E |f_n - f|^p d\mu \\ &\implies \limsup_{n \rightarrow \infty} \int_E |f_n - f|^p d\mu \leq 0 \end{aligned}$$

So,

$$\|f_n - f\|_p \rightarrow 0$$

and, by the triangle inequality we see $\|f_n\|_p \rightarrow \|f\|_p$, as desired.

7. PROBLEM 7

Consider

$$f(x) := \int_0^x \chi_A(x) dx$$

This function is absolutely continuous by absolute continuity of integration, and, in particular, by the intermediate value property of

continuous functions, there exists $y \in [0, 1]$ such that $f(y) = b$. That is, $\mu(A \cap [0, y]) = b$.

Obviously $A \cap [0, y]$ is measurable; it remains to see that there exists a closed set $B \subset A$ with $\mu(B) = A$. Choose $\epsilon = a - b$. By definition of Lebesgue measure we may find a closed set F with $A \cap [0, y] \subset F \subset A$ such that $\mu(A \setminus F) \leq \epsilon$. However, this implies

$$\mu(A \setminus (A \cap [0, y])) = a - b \leq \mu(A \setminus F) \leq a - b$$

In which case $\mu(A \setminus F) = a - b$, so that $\mu(F) = b$, as desired.

8. PROBLEM 8

Note that $f_n \chi_E \leq \sup_n f_n \chi_E \leq \sup_n f_n \in L^1(\mathbb{R})$, where $\sup_n f_n \in L^1(\mathbb{R})$ by assumption. By Lebesgue's dominated convergence theorem,

$$\int_E f_n d\mu = \int f_n \chi_E d\mu \rightarrow \int f \chi_E d\mu = \int_E f d\mu$$

as desired.

9. PROBLEM 9

Since $[a, b]$ is compact, $m := \inf_{x \in [a, b]} |f(x)| > 0$. As f has bounded total variation, we know

$$\sup_{P \text{ partition}} \sum_{k=1}^N |f(b_k) - f(a_k)| < \infty$$

so that

$$\begin{aligned} \sup_{P \text{ partition}} \sum_{k=1}^N \left| \frac{1}{f(b_k)} - \frac{1}{f(a_k)} \right| &\leq \frac{1}{m^2} \sup_{P \text{ partition}} \sum_{k=1}^N |f(b_k) - f(a_k)| \\ &< \infty \end{aligned}$$

So that $1/f$ also has bounded variation.

10. PROBLEM 10

By absolute continuity,

$$|f(b) - f(a)| = \left| \int_a^b f'(t)dt \right|$$

so we compute:

$$\begin{aligned} |f(b) - f(a)| &= \left| \int_a^b f'(t)dt \right| \\ &\leq \int_a^b |f'(t)|dt \\ &\leq \|f'\|_p |b - a|^{1-1/p} \quad (\text{Hölder's}) \end{aligned}$$

So that $C = \|f'\|_p$.