
FALL 2017 QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

Our contour γ is a circle of radius 5; we see that the singularities

of the integrand are 0 and π, so these all lie within our contour. By

Cauchy’s Residue formula,
ˆ
γ

ze3/z +
cos(z)

z2(z − π)3
dz = 2πi

∑
Res(f(z), z0)

Where the above sum is taken over our residues. We first compute the

residue of ze3/z:

ze3/z = z
( ∞∑
n=0

3n

n!zn

)
=
∞∑
n=0

3n

n!zn−1

Then the coefficient of z−1 in the above is our residue, and one imme-

diately sees that this is 9/2.

Similarly, for the second term in our summand, we can find the

residue at 0:

lim
z→0

d

dz

( cos(z)

(z − π)3

)
= lim

z→0

− sin(z)

(z − π)3
− 3 cos(z)

(z − π)4

= − 3

π4
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And, the residue at π gives

1

2
lim
z→π

d2

dz2

(cos(z)

z2

)
=

1

2
lim
z→0

(− cos(z)

z2
+

4 sin(z)

z3
+

6 cos(z)

z4

)
=

1

2π2
− 3

π2

Using this with the integral formula, we get

ˆ
γ

ze3/z +
cos(z)

z2(z − π)3
dz =

i

π
+ 9πi

2. Problem 2

Suppose Im(f) > 0 and consider the function

g(z) := eif(z)

This is entire, since f is. We also see

|g(z)| =
∣∣eif(z)∣∣ = e−Imf(z)

And since Imf(z) > 0, e−Imf(z) 6 1. Thus g is bounded and entire,

hence constant, which means that f must also be constant.

3. Problem 3

Let xn → x be a sequence of points in K+C. We want to show that

x ∈ K + C; note that xn = kn + cn for cn ∈ C, kn ∈ K.

By compactness, we may choose a convergent subsequence knj
such

that knj
→ k ∈ K as j → ∞. Consider then the subsequence cnj

=

xnj
− knj

; as j → ∞, this converges to x − k, and since C is closed,

x− k ∈ C.

We then note that x = (x − k) + k is an element of the Minkowski

sum K + C.
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4. Problem 4

Define f(x) := d(x,B)−d(x,A)
d(x,A)+d(x,B)

.

This is obviously continuous as the ratio of continuous functions.

The bottom cannot vanish since the sets A and B are disjoint. More

specifically, if d(x,A) +d(x,B) = 0, then x ∈ A and x ∈ B, since these

sets are closed, x ∈ A ∩B = ∅, which is impossible.

Whenever x ∈ A, d(x,A) = 0, so f(x) = 1. Similarly, for x ∈ B,

f(x) = −1. Also, by the triangle inequality and positive definiteness

of our metric, ∣∣d(x,B)− d(x,A)| 6 d(x,A) + d(x,B)

Which yields that −1 6 f 6 1.

5. Problem 5

Suppose first that f is measurable. Recall that the metric function

x 7→ d(y, x) is continuous with respect to x, in which case the compo-

sition

x 7→ f(x) 7→ d(y, f(x))

is a measurable function as the composition of a continuous function

with a measurable function.

To see that this holds, note that for every Borel set of R, the inverse

image under a continuous function remains a Borel set. Now suppose

f is measurable and g is continuous. If U is any Borel set, then,

(g ◦ f)−1(U) = f−1(g−1(U)))

Since g−1(U) is Borel, the preimage under f is measurable, so that the

composition is itself measurable.
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Let us prove the converse now. First, recall that for a separable

metric space, measurability of a given function is equivalent to showing

measurability on all open balls.

To see this, choose any Borel set of the codomain. Then, by defini-

tion, this is either a countable union or intersection of open subsets.

We may employ second countability to cover our Borel set with count-

ably many open sets; thus if the inverse image of every open ball is

measurable, f is measurable. The converse holds trivially.

Now, back to the problem at hand. We see:

g−1y
(
(−∞, ε)

)
= {x | d(y, f(x)) < ε}

= f−1(Bε(y))

Since gy is assumed measurable, we see that f−1(Bε(y)) is also mea-

surable. As ε > 0 is arbitrary, f must be measurable of open ball. By

separability, f must be measurable.

6. Problem 6

Let ε > 0. We may find a smooth fc ∈ Lp with compact support

such that ||f − fc||p 6 ε/2 by density of smooth, compactly supported

functions.

Now, consider the difference ||τyf − τyfc||p. Making the change of

variable z = x− y in this difference, we see

||τyf − τyfc||p = ||f − fc||p < ε/2

Now consider ||τyfc− fc||p and suppose that f Supp fc ⊂ [−n, n]. As fc

is smooth, in particular it is continuous on a compact interval, hence

bounded. Then, note that |fc(x− y)− fc(x)| 6 2||f ||∞. By the domi-

nated convergence theorem and continuity,
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lim
y→0

ˆ n

−n
|fc(x− y)− fc(x)|pdx =

ˆ n

−n
lim
y→0
|fc(x− y)− fc(x)|pdx

=

ˆ n

−n
|fc(x)− fc(x)|pdx

= 0

Whence

lim
y→0
||τyf − f ||p 6 lim

y→0

(
||f − fc||p + ||τyfc − fc||p + ||τyfc − τyf ||p

)
< ε/2 + lim

y→0
||τyfc − fc||p + ε/2

= ε

As ε > 0 is arbitrary, we see that

lim
y→0
||τyf − f ||p = 0

as desired.

7. Problem 7

Consider the space of exponential polynomials

S := {
∑
n

ane
nx | an ∈ R}

S contains all constants, since we may just set n = 0; by the Stone-

Weierstrass theorem, this is dense in [0, 1]. By the condition on f , we

also see that for any
∑

n ane
nx ∈ S,ˆ 1

0

f(x)
∑
n

ane
nxdx =

∑
n

an

ˆ 1

0

f(x)enxdx = 0

Let ε > 0. By density, we may find p ∈ S such that ||f−p||1 < ε/||f ||∞;

consider now the quantity
´ 1
0
f 2(x)dx:ˆ 1

0

f 2(x)dx =

ˆ 1

0

f(x)(f(x)− p(x))dx

6 ||f ||∞||f − p||1 (Hölder’s)

< ε
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As ε > 0 is arbitrary, we conclude that
´ 1
0
f 2(x)dx = 0; since f 2(x) > 0,

it must be that f(x) ≡ 0 almost everywhere, which completes the proof.

8. Problem 8

We will first need:

Theorem 8.1 (Egoroff’s Theorem). Let (X,Σ) be a finite measure

space and let fn → f be a sequence of measurable functions converging

pointwise a.e to a measurable f . Then fn converges almost uniformly

and in measure to f .

Let ε ∈ (0, 1). We first proceed to show that f ∈ Lp(X,µ). By uni-

form integrability, we also have a uniform bound such that
´
X
|fn|pdµ 6

M for all n ∈ N. To see this, choose δ′ such that
´
E
|fn|pdµ < 1 for all

E with µ(E) < δ′. Since X is of finite measure, we may partition X

into finitely many sets {Ek}Mk=1 each with measure less than δ′. Then,

for all n, ˆ
X

|fn|pdµ 6
M∑
k=1

ˆ
Ek

|fn|pdµ < M

Then, by Fatou’s lemma,ˆ
X

|f |pdµ 6 lim inf
n→∞

ˆ
X

|fn|p 6M

So that f ∈ Lp(X,µ). Absolute continuity of integration now guaran-

tees the existence of δ1 such that for all sets E with µ(E) < δ1,ˆ
E

|f |pdµ < ε

3 · 2p

Similarly, by uniform integrability we are guaranteed the existence of

δ2 such that for all E with µ(E) < δ2,ˆ
E

|fn|pdµ 6
ε

3 · 2p
for all n ∈ N
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Set δ := min{δ1, δ2}. By Egoroff’s theorem, there exists a set F with

µ(F ) < δ and such that fn → f uniformly on F c. By uniform conver-

gence, on F c we may choose N ∈ N such that for all n > N ,

|fn − f | <
ε

3 · (1 + µ(F c))

Now, putting this all together:

ˆ
X

|fn − f |pdµ =

ˆ
F c

|fn − f |pdµ+

ˆ
F

|fn − f |pdµ

6
ˆ
F c

|fn − f |pdµ+ 2p
(ˆ

F

|f |pdµ+

ˆ
F

|fn|pdµ
)

<
εp

3p · (1 + µ(F c))p
· µ(F c) + 2p

( ε

3 · 2p
+

ε

3 · 2p
)

<
ε

3
+
ε

3
+
ε

3

= ε

Whence ||fn − f ||p → 0, as desired.

9. Problem 9

(a). Consider Z and αZ for any irrational α. Both of these sets are

closed, however, Z + αZ is dense in R, so this sum is obviously not

closed.

(b). Let f ∈ Lq. Consider

E := {x | |f(x)| > 1}

and rewrite

f = f1 + f2
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with f1 = fχE, f2 = fχEc . Then,

||f1||p =
( ˆ

E

|f |pdµ
)1/p

=
( ˆ

E

|f |p−q|f |qdµ
)1/p

6
( ˆ

E

|f |qdµ
)1/p

6 ||f1||q/pq <∞
So f1 ∈ Lp. Similarly,

||f2||r =
( ˆ

Ec

|f |rdµ
)1/r

=
( ˆ

Ec

|f |r−q|f |rdµ
)1/r

6
( ˆ

Ec

|f |qdµ
)1/r

6 ||f2||q/rq <∞
So f2 ∈ Lr, from which we deduce that f ∈ Lp+Lr =⇒ Lq ⊂ Lp+Lr.

(c). Argue by contraposition. If E is not dense in [0, 1], we may find

x ∈ [0, 1] and ε > 0 such that Bε(x) ∩ E = ∅. Then,

1− ε = µ([0, 1]\Bε(x))

> µ(E)

So that µ(E) < 1.

(d). Let ε > 0. Given any δ > 0, there is N ∈ N such that ||fn−f ||p <

δε1/p for all n > N . By Chebyshev’s inequality,

µ({x | |fn(x)− f(x)| > δ}) 6
( ||fn − f ||p

δ

)p
< ε

So that fn → f in measure.

(e). We find the harmonic complement by means of the Cauchy Rie-

mann equations. The answer is

f(x, y) = xy − x+ y + i
(y2

2
− x2

2
− y − x

)


