

FALL 2017 QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Our contour γ is a circle of radius 5; we see that the singularities of the integrand are 0 and π , so these all lie within our contour. By Cauchy's Residue formula,

$$\int_{\gamma} ze^{3/z} + \frac{\cos(z)}{z^2(z - \pi)^3} dz = 2\pi i \sum \text{Res}(f(z), z_0)$$

Where the above sum is taken over our residues. We first compute the residue of $ze^{3/z}$:

$$\begin{aligned} ze^{3/z} &= z \left(\sum_{n=0}^{\infty} \frac{3^n}{n! z^n} \right) \\ &= \sum_{n=0}^{\infty} \frac{3^n}{n! z^{n-1}} \end{aligned}$$

Then the coefficient of z^{-1} in the above is our residue, and one immediately sees that this is $9/2$.

Similarly, for the second term in our summand, we can find the residue at 0:

$$\begin{aligned} \lim_{z \rightarrow 0} \frac{d}{dz} \left(\frac{\cos(z)}{(z - \pi)^3} \right) \\ &= \lim_{z \rightarrow 0} \frac{-\sin(z)}{(z - \pi)^3} - \frac{3 \cos(z)}{(z - \pi)^4} \\ &= -\frac{3}{\pi^4} \end{aligned}$$

Date: January 6, 2018.

And, the residue at π gives

$$\begin{aligned} \frac{1}{2} \lim_{z \rightarrow \pi} \frac{d^2}{dz^2} \left(\frac{\cos(z)}{z^2} \right) &= \frac{1}{2} \lim_{z \rightarrow 0} \left(\frac{-\cos(z)}{z^2} + \frac{4\sin(z)}{z^3} + \frac{6\cos(z)}{z^4} \right) \\ &= \frac{1}{2\pi^2} - \frac{3}{\pi^2} \end{aligned}$$

Using this with the integral formula, we get

$$\int_{\gamma} z e^{3/z} + \frac{\cos(z)}{z^2(z - \pi)^3} dz = \frac{i}{\pi} + 9\pi i$$

2. PROBLEM 2

Suppose $\text{Im}(f) \geq 0$ and consider the function

$$g(z) := e^{if(z)}$$

This is entire, since f is. We also see

$$|g(z)| = |e^{if(z)}| = e^{-\text{Im}f(z)}$$

And since $\text{Im}f(z) \geq 0$, $e^{-\text{Im}f(z)} \leq 1$. Thus g is bounded and entire, hence constant, which means that f must also be constant.

3. PROBLEM 3

Let $x_n \rightarrow x$ be a sequence of points in $K + C$. We want to show that $x \in K + C$; note that $x_n = k_n + c_n$ for $c_n \in C$, $k_n \in K$.

By compactness, we may choose a convergent subsequence k_{n_j} such that $k_{n_j} \rightarrow k \in K$ as $j \rightarrow \infty$. Consider then the subsequence $c_{n_j} = x_{n_j} - k_{n_j}$; as $j \rightarrow \infty$, this converges to $x - k$, and since C is closed, $x - k \in C$.

We then note that $x = (x - k) + k$ is an element of the Minkowski sum $K + C$.

4. PROBLEM 4

Define $f(x) := \frac{d(x, B) - d(x, A)}{d(x, A) + d(x, B)}$.

This is obviously continuous as the ratio of continuous functions.

The bottom cannot vanish since the sets A and B are disjoint. More specifically, if $d(x, A) + d(x, B) = 0$, then $x \in \overline{A}$ and $x \in \overline{B}$, since these sets are closed, $x \in A \cap B = \emptyset$, which is impossible.

Whenever $x \in A$, $d(x, A) = 0$, so $f(x) = 1$. Similarly, for $x \in B$, $f(x) = -1$. Also, by the triangle inequality and positive definiteness of our metric,

$$|d(x, B) - d(x, A)| \leq d(x, A) + d(x, B)$$

Which yields that $-1 \leq f \leq 1$.

5. PROBLEM 5

Suppose first that f is measurable. Recall that the metric function $x \mapsto d(y, x)$ is continuous with respect to x , in which case the composition

$$x \mapsto f(x) \mapsto d(y, f(x))$$

is a measurable function as the composition of a continuous function with a measurable function.

To see that this holds, note that for every Borel set of \mathbb{R} , the inverse image under a continuous function remains a Borel set. Now suppose f is measurable and g is continuous. If U is any Borel set, then,

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$

Since $g^{-1}(U)$ is Borel, the preimage under f is measurable, so that the composition is itself measurable.

Let us prove the converse now. First, recall that for a separable metric space, measurability of a given function is equivalent to showing measurability on all open balls.

To see this, choose any Borel set of the codomain. Then, by definition, this is either a countable union or intersection of open subsets. We may employ second countability to cover our Borel set with countably many open sets; thus if the inverse image of every open ball is measurable, f is measurable. The converse holds trivially.

Now, back to the problem at hand. We see:

$$\begin{aligned} g_y^{-1}((-\infty, \epsilon)) &= \{x \mid d(y, f(x)) < \epsilon\} \\ &= f^{-1}(B_\epsilon(y)) \end{aligned}$$

Since g_y is assumed measurable, we see that $f^{-1}(B_\epsilon(y))$ is also measurable. As $\epsilon > 0$ is arbitrary, f must be measurable of open ball. By separability, f must be measurable.

6. PROBLEM 6

Let $\epsilon > 0$. We may find a smooth $f_c \in L_p$ with compact support such that $\|f - f_c\|_p \leq \epsilon/2$ by density of smooth, compactly supported functions.

Now, consider the difference $\|\tau_y f - \tau_y f_c\|_p$. Making the change of variable $z = x - y$ in this difference, we see

$$\|\tau_y f - \tau_y f_c\|_p = \|f - f_c\|_p < \epsilon/2$$

Now consider $\|\tau_y f_c - f_c\|_p$ and suppose that $\text{Supp } f_c \subset [-n, n]$. As f_c is smooth, in particular it is continuous on a compact interval, hence bounded. Then, note that $|f_c(x - y) - f_c(x)| \leq 2\|f\|_\infty$. By the dominated convergence theorem and continuity,

$$\begin{aligned}
\lim_{y \rightarrow 0} \int_{-n}^n |f_c(x-y) - f_c(x)|^p dx &= \int_{-n}^n \lim_{y \rightarrow 0} |f_c(x-y) - f_c(x)|^p dx \\
&= \int_{-n}^n |f_c(x) - f_c(x)|^p dx \\
&= 0
\end{aligned}$$

Whence

$$\begin{aligned}
\lim_{y \rightarrow 0} \|\tau_y f - f\|_p &\leq \lim_{y \rightarrow 0} \left(\|f - f_c\|_p + \|\tau_y f_c - f_c\|_p + \|\tau_y f_c - \tau_y f\|_p \right) \\
&< \epsilon/2 + \lim_{y \rightarrow 0} \|\tau_y f_c - f_c\|_p + \epsilon/2 \\
&= \epsilon
\end{aligned}$$

As $\epsilon > 0$ is arbitrary, we see that

$$\lim_{y \rightarrow 0} \|\tau_y f - f\|_p = 0$$

as desired.

7. PROBLEM 7

Consider the space of exponential polynomials

$$\mathcal{S} := \left\{ \sum_n a_n e^{nx} \mid a_n \in \mathbb{R} \right\}$$

\mathcal{S} contains all constants, since we may just set $n = 0$; by the Stone-Weierstrass theorem, this is dense in $[0, 1]$. By the condition on f , we also see that for any $\sum_n a_n e^{nx} \in \mathcal{S}$,

$$\int_0^1 f(x) \sum_n a_n e^{nx} dx = \sum_n a_n \int_0^1 f(x) e^{nx} dx = 0$$

Let $\epsilon > 0$. By density, we may find $p \in \mathcal{S}$ such that $\|f - p\|_1 < \epsilon/\|f\|_\infty$; consider now the quantity $\int_0^1 f^2(x) dx$:

$$\begin{aligned}
\int_0^1 f^2(x) dx &= \int_0^1 f(x)(f(x) - p(x)) dx \\
&\leq \|f\|_\infty \|f - p\|_1 \quad (\text{H\"older's}) \\
&< \epsilon
\end{aligned}$$

As $\epsilon > 0$ is arbitrary, we conclude that $\int_0^1 f^2(x)dx = 0$; since $f^2(x) \geq 0$, it must be that $f(x) \equiv 0$ almost everywhere, which completes the proof.

8. PROBLEM 8

We will first need:

Theorem 8.1 (Egoroff's Theorem). *Let (X, Σ) be a finite measure space and let $f_n \rightarrow f$ be a sequence of measurable functions converging pointwise a.e to a measurable f . Then f_n converges almost uniformly and in measure to f .*

Let $\epsilon \in (0, 1)$. We first proceed to show that $f \in L_p(X, \mu)$. By uniform integrability, we also have a uniform bound such that $\int_X |f_n|^p d\mu \leq M$ for all $n \in \mathbb{N}$. To see this, choose δ' such that $\int_E |f_n|^p d\mu < 1$ for all E with $\mu(E) < \delta'$. Since X is of finite measure, we may partition X into finitely many sets $\{E_k\}_{k=1}^M$ each with measure less than δ' . Then, for all n ,

$$\int_X |f_n|^p d\mu \leq \sum_{k=1}^M \int_{E_k} |f_n|^p d\mu < M$$

Then, by Fatou's lemma,

$$\int_X |f|^p d\mu \leq \liminf_{n \rightarrow \infty} \int_X |f_n|^p d\mu \leq M$$

So that $f \in L_p(X, \mu)$. Absolute continuity of integration now guarantees the existence of δ_1 such that for all sets E with $\mu(E) < \delta_1$,

$$\int_E |f|^p d\mu < \frac{\epsilon}{3 \cdot 2^p}$$

Similarly, by uniform integrability we are guaranteed the existence of δ_2 such that for all E with $\mu(E) < \delta_2$,

$$\int_E |f_n|^p d\mu \leq \frac{\epsilon}{3 \cdot 2^p} \quad \text{for all } n \in \mathbb{N}$$

Set $\delta := \min\{\delta_1, \delta_2\}$. By Egoroff's theorem, there exists a set F with $\mu(F) < \delta$ and such that $f_n \rightarrow f$ uniformly on F^c . By uniform convergence, on F^c we may choose $N \in \mathbb{N}$ such that for all $n > N$,

$$|f_n - f| < \frac{\epsilon}{3 \cdot (1 + \mu(F^c))}$$

Now, putting this all together:

$$\begin{aligned} \int_X |f_n - f|^p d\mu &= \int_{F^c} |f_n - f|^p d\mu + \int_F |f_n - f|^p d\mu \\ &\leq \int_{F^c} |f_n - f|^p d\mu + 2^p \left(\int_F |f|^p d\mu + \int_F |f_n|^p d\mu \right) \\ &< \frac{\epsilon^p}{3^p \cdot (1 + \mu(F^c))^p} \cdot \mu(F^c) + 2^p \left(\frac{\epsilon}{3 \cdot 2^p} + \frac{\epsilon}{3 \cdot 2^p} \right) \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} \\ &= \epsilon \end{aligned}$$

Whence $\|f_n - f\|_p \rightarrow 0$, as desired.

9. PROBLEM 9

(a). Consider \mathbb{Z} and $\alpha\mathbb{Z}$ for any irrational α . Both of these sets are closed, however, $\mathbb{Z} + \alpha\mathbb{Z}$ is dense in \mathbb{R} , so this sum is obviously not closed.

(b). Let $f \in L_q$. Consider

$$E := \{x \mid |f(x)| > 1\}$$

and rewrite

$$f = f_1 + f_2$$

with $f_1 = f\chi_E$, $f_2 = f\chi_{E^c}$. Then,

$$\begin{aligned} \|f_1\|_p &= \left(\int_E |f|^p d\mu \right)^{1/p} \\ &= \left(\int_E |f|^{p-q} |f|^q d\mu \right)^{1/p} \\ &\leq \left(\int_E |f|^q d\mu \right)^{1/p} \\ &\leq \|f_1\|_q^{q/p} < \infty \end{aligned}$$

So $f_1 \in L_p$. Similarly,

$$\begin{aligned} \|f_2\|_r &= \left(\int_{E^c} |f|^r d\mu \right)^{1/r} \\ &= \left(\int_{E^c} |f|^{r-q} |f|^q d\mu \right)^{1/r} \\ &\leq \left(\int_{E^c} |f|^q d\mu \right)^{1/r} \\ &\leq \|f_2\|_q^{q/r} < \infty \end{aligned}$$

So $f_2 \in L_r$, from which we deduce that $f \in L_p + L_r \implies L_q \subset L_p + L_r$.

(c). Argue by contraposition. If E is not dense in $[0, 1]$, we may find $x \in [0, 1]$ and $\epsilon > 0$ such that $B_\epsilon(x) \cap E = \emptyset$. Then,

$$\begin{aligned} 1 - \epsilon &= \mu([0, 1] \setminus B_\epsilon(x)) \\ &\geq \mu(E) \end{aligned}$$

So that $\mu(E) < 1$.

(d). Let $\epsilon > 0$. Given any $\delta > 0$, there is $N \in \mathbb{N}$ such that $\|f_n - f\|_p < \delta \epsilon^{1/p}$ for all $n > N$. By Chebyshev's inequality,

$$\mu(\{x \mid |f_n(x) - f(x)| \geq \delta\}) \leq \left(\frac{\|f_n - f\|_p}{\delta} \right)^p < \epsilon$$

So that $f_n \rightarrow f$ in measure.

(e). We find the harmonic complement by means of the Cauchy Riemann equations. The answer is

$$f(x, y) = xy - x + y + i \left(\frac{y^2}{2} - \frac{x^2}{2} - y - x \right)$$