FALL 2017 QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Our contour 7 is a circle of radius 5; we see that the singularities
of the integrand are 0 and 7, so these all lie within our contour. By

Cauchy’s Residue formula,

/zeS/z + Zzzzzs—%dz = 27 Z Res(f(2), z0)

Where the above sum is taken over our residues. We first compute the

residue of ze3/%:

Then the coefficient of z~! in the above is our residue, and one imme-
diately sees that this is 9/2.
Similarly, for the second term in our summand, we can find the

residue at 0:
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And, the residue at 7 gives

1., d* scos(z) 1. /—cos(z) 4sin(z) 6cos(z)
i () =i ()
13
C 272 2

Using this with the integral formula, we get

/zeg/z—i-;L(Z)?)dz: £~|—97r7j
N 22(z —m) T

2. PROBLEM 2

Suppose Im(f) > 0 and consider the function
g(z) = I
This is entire, since f is. We also see
lg(2)| = ‘eif(Z)} — ¢ Imf(2)

And since Imf(z) > 0, e~ mf(z) < 1. Thus g is bounded and entire,

hence constant, which means that f must also be constant.

3. PROBLEM 3

Let x,, — x be a sequence of points in K + C. We want to show that
r € K + C; note that x, = k, + ¢, for ¢, € C, k, € K.

By compactness, we may choose a convergent subsequence k;,; such
that k,, — k € K as j — 0. Consider then the subsequence Cn; =
T

J

r—keC.

— ky;; as j — oo, this converges to z — k, and since C' is closed,

We then note that © = (x — k) + k is an element of the Minkowski
sum K + C.
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4. PROBLEM 4

Define f(x) := %.

This is obviously continuous as the ratio of continuous functions.
The bottom cannot vanish since the sets A and B are disjoint. More
specifically, if d(x, A) +d(z, B) = 0, then € A and x € B, since these
sets are closed, v € AN B = &, which is impossible.

Whenever xz € A, d(z,A) = 0, so f(z) = 1. Similarly, for z € B,
f(z) = —1. Also, by the triangle inequality and positive definiteness

of our metric,
|d(z, B) — d(x, A)| < d(z, A) + d(z, B)

Which yields that —1 < f < 1.

5. PROBLEM 5

Suppose first that f is measurable. Recall that the metric function
x + d(y,x) is continuous with respect to x, in which case the compo-
sition

x> f(z) = d(y, f(z))

is a measurable function as the composition of a continuous function
with a measurable function.

To see that this holds, note that for every Borel set of R, the inverse
image under a continuous function remains a Borel set. Now suppose

f is measurable and g is continuous. If U is any Borel set, then,

(go /) (U)=f (g (U))

Since g~(U) is Borel, the preimage under f is measurable, so that the

composition is itself measurable.
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Let us prove the converse now. First, recall that for a separable
metric space, measurability of a given function is equivalent to showing
measurability on all open balls.

To see this, choose any Borel set of the codomain. Then, by defini-
tion, this is either a countable union or intersection of open subsets.
We may employ second countability to cover our Borel set with count-
ably many open sets; thus if the inverse image of every open ball is
measurable, f is measurable. The converse holds trivially.

Now, back to the problem at hand. We see:

67 ((=00,)) = {x | d(y, f(x)) < ¢}
= [T(B(y))

Since g, is assumed measurable, we see that f~1(B.(y)) is also mea-

surable. As € > 0 is arbitrary, f must be measurable of open ball. By

separability, f must be measurable.

6. PROBLEM 6

Let € > 0. We may find a smooth f. € L, with compact support
such that ||f — f.||, < €/2 by density of smooth, compactly supported
functions.

Now, consider the difference ||7,f — 7, f.||,- Making the change of

variable z = x — y in this difference, we see

7 f =y fellp = [If = fellp < €/2

Now consider ||7, f. — fc||, and suppose that f Supp f. C [-n,n]. As f.
is smooth, in particular it is continuous on a compact interval, hence
bounded. Then, note that |f.(x —y) — f.(z)| < 2||f]|co- By the domi-

nated convergence theorem and continuity,
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i [ (o= 9) ~ fl@)Pds = [ Tim|fuo = 9) - folo)Pds

y—0 | _ _n

— [ 15de) - fw)raa
-0
Whence
tmg 17— flly < lim (1F = 2l + i fe = Flly + 17 e~ 711
<¢e/2+lim ||1, fo — fellp +€/2
y—0

= €

As € > 0 is arbitrary, we see that
li — =0
yli% 7y f = fllp

as desired.

7. PROBLEM 7

Consider the space of exponential polynomials
S = {Z a,e" | a, € R}

S contains all constants, since we may just set n = 0; by the Stone-
Weierstrass theorem, this is dense in [0, 1]. By the condition on f, we

also see that for any ) a,e™ € S,

/1 f(zx) Zanemdm = Zan /1 f(x)e™dx =0
0 - - 0

Let € > 0. By density, we may find p € S such that ||f—p||1 < €/||f]]oo;

consider now the quantity [ f2(z)d:

héﬁmm:ﬂfmqm—mmm
< llcllf —plls (Holder's)

<€
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As e > 0 is arbitrary, we conclude that fol f*(z)dx = 0; since f%(z) > 0,

it must be that f(z) = 0 almost everywhere, which completes the proof.

8. PROBLEM &

We will first need:

Theorem 8.1 (Egoroff’s Theorem). Let (X,X) be a finite measure
space and let f, — f be a sequence of measurable functions converging
pointwise a.e to a measurable f. Then f, converges almost uniformly

and in measure to f.

Let € € (0,1). We first proceed to show that f € L,(X,p). By uni-
form integrability, we also have a uniform bound such that [, |f,|Pdp <
M for all n € N. To see this, choose ¢’ such that [ |f,[Pdp < 1 for all
E with u(E) < ¢'. Since X is of finite measure, we may partition X
into finitely many sets {Fj}2L, each with measure less than ¢’. Then,

for all n,

M
[nran< Y [ 1pan <
X k=1 Ep

Then, by Fatou’s lemma,

[ e <timint [ 11, < 01
X n—oo X
So that f € L,(X, p). Absolute continuity of integration now guaran-

tees the existence of d; such that for all sets F with u(E) < dy,

€
rd
/Elfl h< 3o

Similarly, by uniform integrability we are guaranteed the existence of

9y such that for all F with u(E) < ds,

€

/E|fn\pdu< T foralln € N
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Set 6 := min{dy,do}. By Egoroft’s theorem, there exists a set F' with
u(F) < § and such that f, — f uniformly on F°. By uniform conver-

gence, on F° we may choose N € N such that for all n > N,

(14 u(F*))

|fn_f‘<3

Now, putting this all together:

[ 1=t = [ 10 pan [ 15 - s
< [ 1= a2 ([ ipan [ 150ran)

€P € €
< - u(F° 2p< )
3P - (14 u(Fe))r p(F) + 3.2p+3.2p
P
3 3 3

= €

Whence || f,, — f||, = 0, as desired.

9. PROBLEM 9

(a). Consider Z and oZ for any irrational a. Both of these sets are
closed, however, Z + aZ is dense in R, so this sum is obviously not

closed.

(b). Let f € L,. Consider

E={z||f(z)| > 1}
and rewrite

f=h+f
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with fi = fxe, f2 = fxg-. Then,
» 1/p
1l = (] 1f1rdn)

= ([ irroispan)”
< ([ ispan)”

< AP < oo

So f1 € L,. Similarly,
1l = ( Ec\f\rdu)
= () o i)

< < . Iflqdu)

< |Ifallf < oo
So fy € L,, from which we deduce that f € L,+L, = L, C L,+L,.

(c). Argue by contraposition. If £ is not dense in [0, 1], we may find
x €[0,1] and € > 0 such that B.(z) N £ = @. Then,
1—e=p([0,1\Bc(z))
> u(E)
So that u(F) < 1.
(d). Let e > 0. Given any 0 > 0, there is N € N such that || f, — f||, <
§e*/? for all n > N. By Chebyshev’s inequality,

ulle | 1fale) = f@) 2 59) < (12Tl

So that f,, — f in measure.

(e). We find the harmonic complement by means of the Cauchy Rie-

mann equations. The answer is

2 2

(YT
f(:c,y):a:y—x—i—yjtz(E—?—y—x)



