FALL 2016 QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Suppose the conclusion is false; then we may find A,, with diam(A4,,) <
1/n, and z,, € A, with A, ¢ U. Choose a convergent subsequence
Zn, — * € K by compactness of K. Since U is open, we may find
e > 0 such that B.(x) C U. Since z,, — =, we may choose k such that
d(z,,,r) < €/2, and additionally, we may choose k large enough such
that diam(A,,) < €/2. Taking k sufficiently large to satisfy the above,
we see that for any a € 4,,,

d(z,a) < d(z,z,,) + d(xy,, a)
<€/2+¢€/2

=€

From which we deduce that A,, C B.(z) C U, which is a contradiction.

2. PROBLEM 2

Assume the conclusion is false. If (EF' + 1/n) N (E + 1/m) = @ for

every n,m € N, then, consider

JE +1/n)

n=>1

Since E' is bounded, this union is also bounded. We also see,

p(UE+1/m) =3 ) = o

n=1 n=1
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which is impossible, so that there must exist n and m such that
(E+1/n)N(E+1/m)# o

Now, if the above holds, we may find z, y € E such that x + 1/n =

y + 1/n, in which case
r—y=1/m—-1/neqQ

As asserted.

3. PROBLEM 3

Define g, := max{fi,..., fn}. Obviously f, < g, for every n, and
gn is integrable for every n. By Lebesgue’s dominated convergence

theorem,

/ fndp — 0
E

4. PROBLEM 4

(a). Certainly xr < 1 for any values of z and ¢, so

=1

S|

1/n
n/ xe(x+t)dt <n-
0

And obviously 0 < f,.

(b). After a change of variable, we see that

1/n+x
fulz) =n / xa(t)dt
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We then see

1/n+z+h 1/n+x
ot h) = @l = [ e~ [ xeta

+h

z+h 1/n+z+h
—al [ xetar [ (o
x z+1/n

z+h 1/n+z+h
<ol [ xea <] [ xeta
x z+1/n

< 2n|h|
So that f,, is Lipschitz of coefficient 2n.

(c). Note that x g is a measurable and integrable function. By Lebesgue’s

differentiation theorem, for almost all x € R,

1/n+x
limn [ xe()dt = xe(a)

n—o0

as desired.

(d). By part (a), we may employ the dominated convergence theorem;

by part (c), we see:

i [ 1)~ sl = [ I ) ~ xso

n—oo n—
=0
So that || f, — xel|l1 — 0.

5. PROBLEM b5

[ [ [ 2
:/1 >/ddt
:/f(t)dt

Since f € Ly, f is absolutely integrable; since fo r)dr = fo

We see:

obviously g(z) must also be absolutely integrable. To see this more
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clearly, let € > 0. By absolute integrability of f, there exists ¢ such
that u(E) < ¢ implies

[ If@de <

Then, since the integrals of f and ¢ coincide,

[ lotwlas <

as desired.

6. PROBLEM 6

(a). Since f,, € L, for every n, take

M = supd]| fullp}

This supremum is finite, since if not, ||f,||, — oo, contradicting the

integrability of f. Thus M is finite, and by definition,

| fallp < M

for all n € N.

(b). Note first that ||f]|, < M as well, M as given in part (a). Let
€ > 0; there exists N € N such that

62

_ < -

for all n > N. We then see:
3 = Fllpyz = 1(fa = F)(Fn+ F)llps2

< |fn = Fllpllfn + fllp - (Holder’s)

< fa = Fllo (1 fallo + 11£115)

< G

So that || — f?|[,/2 — 0.

2M)'/% = €
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7. PROBLEM 7

]

z .
f(z) £ ()]
This function is holomorphic everywhere except possibly at the ori-

Consider g(z) := we have that < 1 and is hence bounded.
gin, in which case the function still remains bounded in some deleted
neighborhood. By the Riemann extension theorem, we may extend g
to some g that is entire.

This extension will remain bounded, and we deduce by Liouville’s

theorem that ¢ will be constant. Restricting, this implies that g is also

constant; that is,
z

f(z)

Taking the modulus of the above, we also find:

=C

2] - el = |2] = e[ > 1

In which case f(z) = cz for |¢| > 1, which was to be proved.

8. PROBLEM 8

(a). Let z € R. By the condition f(R) C R, we know that f(z) = f(2).
Comparing the power series expansions, this implies
IR B
= a, = a, for all n

So that a,, € R for all n.

(b). Again let z € R. If f(iR) C iR, then we deduce that f(iz) =

—f(iz). Using this,
Z a,i"z" = — Z an(—i)"2"
= a, = (—1)""a, for all n

= a,, = 0 for even n
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In which case we deduce that f is an odd function, that is, f(—z) =

—f(2) for all z.

9. PROBLEM 9

(a). False. No such set can exists. To see this, recall that Lebesgue’s

differentiation theorem implies that for all x € E|

g A0 Bz 1)

=1
8 B )]

However, by the condition on E, we see that the left hand side has
value 1/2; so that if £ had the desired property, this limit would equal

1/2, a contradiction.

(b). True. Recall that for f differentiable a.e, we always have that
J? f(@)dx < f(b) — f(a). Then,

1< f(x)
:>/xdx</mf'(t)dt
:>x</0wf/(t)dt<f($)—f(0)
= < f(z) — f(0)

Since f(0) > 0, we know that f(z) — f(0) < f(x), so that z < f(x) for
all z € [0, 1].

(c). False. Merely take

fn = X[0,1/2] — X(1/2,1] for all n

Then, f01 fadp = 0 for every n, but f, # 0 (really you can just take

any odd function on a symmetric interval).
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(d). True. Argue by contraposition. Suppose f? does not have an

essential singularity at 0. Then, there exists /N such that

lim 2" f3(2) = 0

z—0

for all n > N. Choose m such that 3m > N; we see

lim 27 f(2) = (lim 2™ f(2))” = 0
In which case we see that f(z) cannot have an essential singularity at
0.

Alternatively, we may employ Casorati- Weierstrass to deduce this
result; for every e > 0, we know that f(B.(0)\0) is dense in C. Com-
posing with z +— 23, which is continuous and surjective, this remains
dense in C. But the only such singularity with this property is essential,

whence the result.

(e). False. Suppose that f is holomorphic; then, in some neighborhood

of 0, we may write

f(z) = Z an 2"

n=0

In which case f'(z) = 3., na,z"~" is still holomorphic at 0, so that

there is no way that f’ can have a pole of order 1.



