
FALL 2016 QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

Suppose the conclusion is false; then we may findAn with diam(An) <

1/n, and xn ∈ An with An 6⊂ U . Choose a convergent subsequence

xnk
→ x ∈ K by compactness of K. Since U is open, we may find

ε > 0 such that Bε(x) ⊂ U . Since xnk
→ x, we may choose k such that

d(xnk
, x) < ε/2, and additionally, we may choose k large enough such

that diam(Ank
) < ε/2. Taking k sufficiently large to satisfy the above,

we see that for any a ∈ Ank
,

d(x, a) 6 d(x, xnk
) + d(xnk

, a)

< ε/2 + ε/2

= ε

From which we deduce that Ank
⊂ Bε(x) ⊂ U , which is a contradiction.

2. Problem 2

Assume the conclusion is false. If (E + 1/n) ∩ (E + 1/m) = ∅ for

every n,m ∈ N, then, consider⋃
n>1

(E + 1/n)

Since E is bounded, this union is also bounded. We also see,

µ
( ⋃
n>1

(E + 1/n)
)

=
∑
n>1

µ(E) =∞
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which is impossible, so that there must exist n and m such that

(E + 1/n) ∩ (E + 1/m) 6= ∅

Now, if the above holds, we may find x, y ∈ E such that x + 1/n =

y + 1/n, in which case

x− y = 1/m− 1/n ∈ Q

As asserted.

3. Problem 3

Define gn := max{f1, . . . , fn}. Obviously fn 6 gn for every n, and

gn is integrable for every n. By Lebesgue’s dominated convergence

theorem,
ˆ
E

fndµ→ 0

4. Problem 4

(a). Certainly χE 6 1 for any values of x and t, so

n

ˆ 1/n

0

χE(x+ t)dt 6 n · 1

n
= 1

And obviously 0 6 fn.

(b). After a change of variable, we see that

fn(x) = n

ˆ 1/n+x

x

χE(t)dt
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We then see

|fn(x+ h)− fn(x)| = n
∣∣∣ˆ 1/n+x+h

x+h

χE(t)dt−
ˆ 1/n+x

x

χE(t)dt
∣∣∣

= n
∣∣∣ˆ x+h

x

χE(t)dt+

ˆ 1/n+x+h

x+1/n

χE(t)dt
∣∣∣

6 n
∣∣∣ˆ x+h

x

χE(t)dt
∣∣∣+
∣∣∣ˆ 1/n+x+h

x+1/n

χE(t)dt
∣∣∣

6 2n|h|
So that fn is Lipschitz of coefficient 2n.

(c). Note that χE is a measurable and integrable function. By Lebesgue’s

differentiation theorem, for almost all x ∈ R,

lim
n→∞

n

ˆ 1/n+x

x

χE(t)dt = χE(x)

as desired.

(d). By part (a), we may employ the dominated convergence theorem;

by part (c), we see:

lim
n→∞

ˆ 1

0

|fn(x)− χE(x)|dx =

ˆ 1

0

lim
n→∞

|fn(x)− χE(x)|dx

= 0

So that ||fn − χE||1 → 0.

5. Problem 5

We see: ˆ 1

0

g(x)dx =

ˆ 1

0

ˆ 1

x

f(t)

t
dtdt

=

ˆ 1

0

f(t)

t

ˆ t

0

dxdt

=

ˆ 1

0

f(t)dt

Since f ∈ L1, f is absolutely integrable; since
´ 1
0
g(x)dx =

´ 1
0
f(x)dx,

obviously g(x) must also be absolutely integrable. To see this more
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clearly, let ε > 0. By absolute integrability of f , there exists δ such

that µ(E) < δ implies ˆ
E

|f(x)|dx < ε

Then, since the integrals of f and g coincide,ˆ
E

|g(x)|dx < ε

as desired.

6. Problem 6

(a). Since fn ∈ Lp for every n, take

M := sup
n
{||fn||p}

This supremum is finite, since if not, ||fn||p → ∞, contradicting the

integrability of f . Thus M is finite, and by definition,

||fn||p 6M

for all n ∈ N.

(b). Note first that ||f ||p 6 M as well, M as given in part (a). Let

ε > 0; there exists N ∈ N such that

||fn − f ||p 6
ε2

2M

for all n > N . We then see:

||f 2
n − f 2||p/2 = ||(fn − f)(fn + f)||p/2

6 ||fn − f ||p||fn + f ||p (Hölder’s)

6 ||fn − f ||p
(
||fn||p + ||f ||p

)
<

ε

(2M)1/2
· (2M)1/2 = ε

So that ||f 2
n − f 2||p/2 → 0.



FALL 2016 QUALIFYING EXAM 5

7. Problem 7

Consider g(z) := z
f(z)

; we have that |z|
|f(z)| 6 1 and is hence bounded.

This function is holomorphic everywhere except possibly at the ori-

gin, in which case the function still remains bounded in some deleted

neighborhood. By the Riemann extension theorem, we may extend g

to some g̃ that is entire.

This extension will remain bounded, and we deduce by Liouville’s

theorem that g̃ will be constant. Restricting, this implies that g is also

constant; that is,
z

f(z)
= c

Taking the modulus of the above, we also find:

|z| · |c| > |z| =⇒ |c| > 1

In which case f(z) = cz for |c| > 1, which was to be proved.

8. Problem 8

(a). Let z ∈ R. By the condition f(R) ⊂ R, we know that f(z) = f(z).

Comparing the power series expansions, this implies∑
n

anz
n =

∑
n

anz
n

=⇒ an = an for all n

So that an ∈ R for all n.

(b). Again let z ∈ R. If f(iR) ⊂ iR, then we deduce that f(iz) =

−f(iz). Using this, ∑
n

ani
nzn = −

∑
n

an(−i)nzn

=⇒ an = (−1)n+1an for all n

=⇒ an = 0 for even n
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In which case we deduce that f is an odd function, that is, f(−z) =

−f(z) for all z.

9. Problem 9

(a). False. No such set can exists. To see this, recall that Lebesgue’s

differentiation theorem implies that for all x ∈ E,

lim
r→0

µ(E ∩B(x, r))

|B(x, r)|
= 1

However, by the condition on E, we see that the left hand side has

value 1/2, so that if E had the desired property, this limit would equal

1/2, a contradiction.

(b). True. Recall that for f differentiable a.e, we always have that´ b
a
f ′(x)dx 6 f(b)− f(a). Then,

1 6 f ′(x)

=⇒
ˆ x

0

dx 6
ˆ x

0

f ′(t)dt

=⇒ x 6
ˆ x

0

f ′(t)dt 6 f(x)− f(0)

=⇒ x 6 f(x)− f(0)

Since f(0) > 0, we know that f(x)− f(0) 6 f(x), so that x 6 f(x) for

all x ∈ [0, 1].

(c). False. Merely take

fn := χ[0,1/2] − χ(1/2,1] for all n

Then,
´ 1
0
fndµ = 0 for every n, but fn 6≡ 0 (really you can just take

any odd function on a symmetric interval).
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(d). True. Argue by contraposition. Suppose f 3 does not have an

essential singularity at 0. Then, there exists N such that

lim
z→0

znf 3(z) = 0

for all n > N . Choose m such that 3m > N ; we see

lim
z→0

z3mf 3(z) =
(

lim
z→0

zmf(z)
)3

= 0

In which case we see that f(z) cannot have an essential singularity at

0.

Alternatively, we may employ Casorati-Weierstrass to deduce this

result; for every ε > 0, we know that f(Bε(0)\0) is dense in C. Com-

posing with z 7→ z3, which is continuous and surjective, this remains

dense in C. But the only such singularity with this property is essential,

whence the result.

(e). False. Suppose that f is holomorphic; then, in some neighborhood

of 0, we may write

f(z) =
∑
n>0

anz
n

In which case f ′(z) =
∑

n>1 nanz
n−1 is still holomorphic at 0, so that

there is no way that f ′ can have a pole of order 1.


