

AUGUST 2012 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Let (X, ρ) , (Y, σ) denote our metric spaces. Let $\epsilon > 0$; pick $K_{\epsilon/3}$ as in the problem statement. We have 3 cases:

Case 1: $x, y \in K_{\epsilon/3}$. Since f is continuous on a compact set, f is uniformly continuous on this set already.

Case 2: $x, y \notin K_{\epsilon/3}$. Then, for all M , $\rho(x, y) < M$ implies $\sigma(f(x), f(y)) < \epsilon/3 < \epsilon$.

Case 3: $x \in K_{\epsilon/3}$, $y \notin K_{\epsilon/3}$. Since f is uniformly continuous on $K_{\epsilon/3}$, we may find δ_1 such that for all $a, b \in K_{\epsilon/3}$, $\rho(a, b) < \delta_1 \implies \sigma(f(a), f(b)) < \epsilon/3$. Let $\rho(x, y) < \delta_1/2$.

Then, in particular, $\rho(y, K_{\epsilon/3}) > 0$ by compactness, and we may find $z \in \partial K_{\epsilon/3}$ such that $\rho(y, z) < \epsilon/3$. Then, note that

$$\rho(x, z) \leq \rho(x, y) + \rho(y, z) < \delta_1$$

Now, by continuity of f , there exists δ_2 such that for all ℓ such that $\rho(\ell, z) < \delta_2$, $\sigma(f(\ell), f(z)) < \epsilon/3$. As $z \in \partial K_{\epsilon/3}$, there exists $\ell \notin K_{\epsilon/3}$ such that $\rho(\ell, z) < \delta_2$. Then, putting this all together,

$$\begin{aligned} \sigma(f(x), f(y)) &\leq \sigma(f(x), f(z)) + \sigma(f(z), f(\ell)) + \sigma(f(\ell), f(y)) \\ &< \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon \end{aligned}$$

Whence we deduce that f is uniformly continuous.

2. PROBLEM 2

Suppose that $\|\chi_{E_n} - f\|_1 \rightarrow 0$. In particular, by Chebyshev's inequality, $\chi_{E_n} \rightarrow f$ in measure, so that we may choose a subsequence $\chi_{E_{n_k}}$ such that

$$\chi_{E_{n_k}} \rightarrow f \text{ a.e}$$

Now, for any given $x \in \mathbb{R}$, $\chi_{E_{n_k}}(x) \in \{0, 1\}$, so that in order for such a subsequence to converge, it must become eventually constant for almost every x . That is, $f(x) \in \{0, 1\}$ for almost every x . Now, set $E := \bigcup_{m \geq 0} \bigcap_{n \geq m} \{x \mid \chi_{E_{n_k}}(x) = 1\}$. This is certainly measurable as the union and intersection of measurable sets. By construction, if $x \in E$, then $\chi_{E_{n_k}}(x) = 1$ for all k sufficiently large, whence $\chi_E = f$ almost everywhere, as contended.

3. PROBLEM 3

Let $N \in \mathbb{N}$. Then,

$$\begin{aligned} \int_{\mathbb{R}} \left| \sum_{n=1}^N f_n(x) \right| dx &\leq \sum_{n=1}^N \int_{\mathbb{R}} |f_n(x)| dx \\ &= \sum_{n=1}^N \int_{\mathbb{R}} \frac{|f(u)|}{n^{\alpha+1}} du \quad (u = nx) \\ &\leq \|f\|_1 \cdot \sum_{n=1}^N \frac{1}{n^{\alpha+1}} \end{aligned}$$

Now, let $N \rightarrow \infty$; we find

$$\int_{\mathbb{R}} \left| \sum_{n=1}^{\infty} f_n(x) \right| dx \leq \|f\|_1 \sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}} < \infty$$

where $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha+1}}$ converges since $\alpha > 0$. This then tells us that $\sum_{n=1}^{\infty} f_n(x)$ is integrable, hence finite almost everywhere. That is, $\sum_{n=1}^{\infty} f_n(x)$ is convergent almost everywhere.

4. PROBLEM 4

(a). Let $N \in \mathbb{N}$. Note that

$$f_n(x) = \int_0^x f'_n(t) dt$$

Then,

$$\begin{aligned} \left| \sum_{n=1}^N f_n(x) \right| &= \left| \sum_{n=1}^N \int_0^x f'_n(t) dt \right| \\ &\leq \sum_{n=1}^N \int_0^x |f'_n(t)| dt \\ &\leq \sum_{n=1}^{\infty} \int_0^1 |f'_n(t)| dt < \infty \end{aligned}$$

Letting $N \rightarrow \infty$, this series is bounded, hence convergent for all $x \in [0, 1]$.

(b). Let $\epsilon > 0$. We may find $N \in \mathbb{N}$ such that

$$\sum_{n=1}^{\infty} f_n(x) < \sum_{n=1}^N f_n(x) + \epsilon/4$$

Similarly, by absolute continuity of each f_n , we may find δ_n such that for all intervals $\{(a_k, b_k)\}$ with $\sum_k b_k - a_k < \delta_n$,

$$\sum_k |f_n(b_k) - f_n(a_k)| < \frac{\epsilon}{2N}$$

Then, choose $\delta := \min_n \{\delta_n\}$. Then, for any set of open intervals with $\sum_k b_k - a_k < \delta$,

$$\begin{aligned} \sum_k |f_n(b_k) - f_n(a_k)| &< \sum_k \sum_{n=1}^N |f_n(b_k) - f_n(a_k)| + \epsilon/2 \\ &= \sum_{n=1}^N \sum_k |f_n(b_k) - f_n(a_k)| + \epsilon/2 \\ &< \sum_{n=1}^N \frac{\epsilon}{2N} + \epsilon/2 = \epsilon \end{aligned}$$

So that f is absolutely continuous.

(c). By splitting into positive and negative parts, we may assume $f'_n \geq 0$

0. Then, using that fact that f is absolutely continuous by part (b),

$$\begin{aligned} \int_0^1 \lim_{N \rightarrow \infty} f'(1) - \sum_{n=1}^N f'_n(x) dx &\leq \liminf_{N \rightarrow \infty} \int_0^1 f'(x) - \sum_{n=1}^N f'_n(x) dx \\ &= \liminf_{N \rightarrow \infty} f(1) - \sum_{n=1}^N f'_n(1) \\ &= f(1) - f(1) = 0 \end{aligned}$$

5. PROBLEM 5

If $\mu(A) = \mu(B)$, then $\mu(B \setminus A) = 0$. Since $E \setminus A \subset B \setminus A$ and Lebesgue measure on \mathbb{R} is a complete measure, we deduce that $E \setminus A$ is measurable and has measure 0. Then,

$$E = (E \setminus A) \cup A$$

is the union of measurable sets, hence measurable, and

$$\mu(E) = \mu(E \setminus A) + \mu(A) = \mu(A)$$

6. PROBLEM 6

(a). Let $f \in L^2(\mathbb{R})$. Then, employing Hölder's inequality,

$$\begin{aligned} \|\chi_{[-1,1]}f\|_1 &\leq \|\chi_{[-1,1]}\|_2 \|f\chi_{[-1,1]}\|_2 \\ &= \sqrt{2} \|f\chi_{[-1,1]}\|_2 \end{aligned}$$

b). Using part (a), we have:

$$\begin{aligned} \|f\|_1 &\leq \|f\chi_{[-1,1]}\|_1 + \|f\chi_{\mathbb{R} \setminus [-1,1]}\|_1 \\ &\leq \sqrt{2} \|f\|_2 + \|f\chi_{\mathbb{R} \setminus [-1,1]}\|_1 \end{aligned}$$

Let us now consider the rightmost term. We see:

$$\begin{aligned}
 \|f\chi_{\mathbb{R}\setminus[-1,1]}\|_1 &= \int_{\mathbb{R}\setminus[-1,1]} f d\mu \\
 &= \int_{\mathbb{R}\setminus[-1,1]} \frac{g(x)}{x} d\mu \\
 &\leq \left(\int_{\mathbb{R}\setminus[-1,1]} \frac{1}{x^2} dx \right)^{1/2} \|g\|_2 \quad (\text{Hölder's}) \\
 &= \sqrt{2} \|g\|_2
 \end{aligned}$$

Combining this with the above, we find:

$$\|f\|_1 \leq \sqrt{2} (\|f\|_2 + \|g\|_2)$$

as asserted.

7. PROBLEM 7

Since $|p_n| \rightarrow \infty$, this sequence cannot have any accumulation point. Consider now $\frac{1}{f}$. This is bounded and holomorphic away from $\{p_n\}$, so that by the Riemann extension theorem we may choose an extension \tilde{f} such that $\frac{1}{\tilde{f}}$ extends $\frac{1}{f}$.

Then, this extension is bounded and entire, hence constant by Liouville's theorem. This then gives that $\frac{1}{f}$ is constant, so that f is constant as well, as desired.

8. PROBLEM 8

Recall that by the Cauchy-Hadamard theorem, $\limsup_{n \rightarrow \infty} |a_n|^{1/n} = 1/R$, where R denotes the radius of convergence. We then want to solve

$$\cos(\pi z) = 0 \implies z = (2k+1)/2, \quad k \in \mathbb{N}$$

Then, the closest singularities to the point $z = 1$ are located at both $-1/2$ and $1/2$. Both of these have distance

$$|i - 1/2| = \sqrt{1 + 1/4} = \frac{\sqrt{5}}{2}$$

so the radius of convergence is $\sqrt{5}/2$. Taking the reciprocal,

$$\limsup_{n \rightarrow \infty} |a_n|^{1/n} = \frac{2}{\sqrt{5}}$$

9. PROBLEM 9

(a). True. Make a change of variable such that $I + a = [-\pi, \pi]$. Then,

$$\begin{aligned} \int_I f(x) dx &= \int_{-\pi}^{\pi} f(x - a) dx \\ &= \int_{-\pi}^{\pi} f(x) dx \end{aligned}$$

Where, by periodicity, $f(x)$ and $f(x - a)$ attain the same values on the interval $[-\pi, \pi]$, whence have the same integral over $[-\pi, \pi]$.

(b). True. By maximum modulus principle,

$$\max_{|z|=1} |P(z)| \geq \max_{z \in B_1(0)} |P(z)|$$

Note that $P(0) = 1$, so that

$$1 \leq \max_{|z|=1} |P(z)|$$

as contended.

(c). False. Suppose $f(1/n) = 1/n^3$. Since $\{1/n\}_{n \in \mathbb{N}}$ has an accumulation point, the identity principle implies that $f(z) = z^3$ everywhere. However, this then means that $f(-1/n) = -1/n^3$, a contradiction.

(d). False. Set $f_n = \frac{\chi_{[0,n]}}{n}$. Then, it is easy to see that

$$\|f_n\|_2 = \frac{1}{n} \rightarrow 0$$

However,

$$\|f_n\|_1 = 1 \text{ for all } n \in \mathbb{N}$$

(e). False. Consider $f_n := \frac{\chi_{[-n,n]}}{2n}$, $f = 0$. Then,

$$|f_n - f| < \frac{1}{2n} < \frac{1}{n}$$

for all x . However,

$$\|f_n\|_1 = 1 > 0$$

for all $n \in \mathbb{N}$.