AUGUST 2012 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Let (X, p), (Y,0) denote our metric spaces. Let € > 0; pick K./3 as
in the problem statement. We have 3 cases:

Case 1: 7, y € K./3. Since f is continuous on a compact set, f is
uniformly continuous on this set already.

Case 2: z, y ¢ K.3. Then, for all M, p(xz,y) < M implies
o(f(@), f(y)) < /3 < c.

Case 3: z € K3,y ¢ K./3. Since f is uniformly continuous on
K./3, we may find d; such that for all a, b € K3, p(a,b) < 6y —
o(f(a), F(B)) < ¢/3. et p(,y) < 81/2.

Then, in particular, p(y, K/3) > 0 by compactness, and we may find
z € 0K 3 such that p(y, z) < ¢/3. Then, note that

p(x,z) < plx,y) + ply, z) < &

Now, by continuity of f, there exists d5 such that for all ¢ such that
p(l,z) < by, a(f(£), f(2)) < €/3. As z € OK3, there exists { ¢ K /3
such that p(¢, z) < d5. Then, putting this all together,
o(f(x), f(y)) < o(f(x), f(2)) + o (f(2), () + o (f(€), f(y))
<e€/3+€/3+¢€/3=c¢

Whence we deduce that f is uniformly continuous.
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2. PROBLEM 2

Suppose that ||xg, — flli — 0. In particular, by Chebyshev’s in-
equality, xg, — f in measure, so that we may choose a subsequence
XE,, such that

XE,, — | ae
Now, for any given z € R, xp, (v) € {0,1}, so that in order for
such a subsequence to converge, it must become eventually constant
for almost every z. That is, f(z) € {0, 1} for almost every z. Now,
set E = 20 Npzmi® | X&., (¥) = 1}. This is certainly measurable
as the union and intersection of measurable sets. By construction, if
x € B, then xg,, () = 1 for all k sufficiently large, whence yg = f

almost everywhere, as contended.

3. PROBLEM 3

Let N € N. Then,

1
< ||f\|1~zna+1

n=1

Now, let N — oo; we find

o0 o0 1
dz < || fll <00
AT

where >, na% converges since a > 0. This then tells us that

> o2 falx) is integrable, hence finite almost everywhere. That is,

00 .
> oo is convergent almost everywhere.
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4. PROBLEM 4

-/ e

\fjfn(x)) - \ﬁ [ gt
< i [ e

St
< Z/O (b))t < oo
n=1

Letting N — oo, this series is bounded, hence convergent for all z €

0, 1].

(a). Let N € N. Note that

Then,

(b). Let € > 0. We may find N € N such that

> fale) < an ) +€/4
n=1

Similarly, by absolute continuity of each f,, we may find ¢,, such that
for all intervals {(ax, by)} with >, br — ap < 0n,

e
Then, choose § := mmn{én}. Then, for any set of open intervals with

Zkbk—ak <5,

Z‘fn(bk fn Qg | < ZZ|fn bk fn ak)l _'_6/2
k

k n=1

= ZZm bi) = falan)| +€/2

n=1 k

N
€
<Zﬁ+€/2:€
n=1
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So that f is absolutely continuous.

(c). By splitting into positive and negative parts, we may assume f/ >

0. Then, using that fact that f is absolutely continuous by part (b),

N—o0 N—oo

1 N 1 N
/0 lim f(1) — Zf,’l(q:)dx < liminf/O f'(z) — Zf;l(x)dx

= liminf f(1) = ) _ f1(1)

=f(1)—f(1)=0
5. PROBLEM 5

If 1(A) = p(B), then u(B\A) = 0. Since E\A C B\ A and Lebesgue
measure on R is a complete measure, we deduce that F'\ A is measurable

and has measure 0. Then,
E=(E\A)UA
is the union of measurable sets, hence measurable, and

p(E) = p(ENA) + p(A) = p(A)

6. PROBLEM 6

(a). Let f € L*(R). Then, employing Holder’s inequality,
HX[—l,l]le < ||X[71,1]H2||fX[—1,1]H2
= \/§||fX[71,1]||2

b). Using part (a), we have:
A1 < L Xl + [ ey =l

< V2| fllo + 1 Fxmy-1ulh
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Let us now consider the rightmost term. We see:

| fxry-1.1] 1 :/ fdu
[_171]

1 1/2
<( / ) llglly (Holder’s)
R\[-1,1] L
= V2|gll2

Combining this with the above, we find:

1/11e < V2(11/1l2 + llgll2)

as asserted.

7. PROBLEM 7

Since |p,| — oo, this sequence cannot have any accumulation point.
Consider now % This is bounded and holomorphic away from {p, }, so
that by the Riemann extension theorem we may choose an extension
]?such that % extends %

Then, this extension is bounded and entire, hence constant by Liou-
ville’s theorem. This then gives that % is constant, so that f is constant

as well, as desired.

8. PROBLEM &
Recall that by the Cauchy-Hadamard theorem, limsup,, . |a,|"/" =

1/R, where R denotes the radius of convergence. We then want to solve

cos(mz) =0 = z=(2k+1)/2, ke N
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Then, the closest singularities to the point z = 1 are located at both

—1/2 and 1/2. Both of these have distance

i—1/2]=+/1+1/4=

so the radius of convergence is v/5/2. Taking the reciprocal,

| S

2
lim sup |a,|"™ = —

n—+00 \/3

9. PROBLEM 9

(a). True. Make a change of variable such that I +a = [—m, 7]. Then,

[f@ﬂx:/iﬂx—@m

:/iﬂ@ﬂ

Where, by periodicity, f(z) and f(z —a) attain the same values on the

interval [—m, 7], whence have the same integral over [—m, 7].

(b). True. By maximum modulus principle,
max |P(z)| > max |P(z
nax|P(2) > s [P(2)
Note that P(0) = 1, so that
L < max |P(2)]

as contended.

(c). False. Suppose f(1/n) = 1/n3. Since {1/n},en has an accumu-

3

lation point, the identity principle implies that f(z) = z* everywhere.

However, this then means that f(—1/n) = —1/n3, a contradiction.
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(d). False. Set f,, = X2 Then, it is easy to see that

1
| fallz =~ =0
n

However,

l|fulli =1 for alln e N

e). False. Consider f, := == f = (. Then,
2n

for all . However,

[falli =1>0

for all n € N.



