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1. Problem 1

Let (X, ρ), (Y, σ) denote our metric spaces. Let ε > 0; pick Kε/3 as

in the problem statement. We have 3 cases:

Case 1: x, y ∈ Kε/3. Since f is continuous on a compact set, f is

uniformly continuous on this set already.

Case 2: x, y /∈ Kε/3. Then, for all M , ρ(x, y) < M implies

σ(f(x), f(y)) < ε/3 < ε.

Case 3: x ∈ Kε/3, y /∈ Kε/3. Since f is uniformly continuous on

Kε/3, we may find δ1 such that for all a, b ∈ Kε/3, ρ(a, b) < δ1 =⇒

σ(f(a), f(b)) < ε/3. Let ρ(x, y) < δ1/2.

Then, in particular, ρ(y,Kε/3) > 0 by compactness, and we may find

z ∈ ∂Kε/3 such that ρ(y, z) < ε/3. Then, note that

ρ(x, z) 6 ρ(x, y) + ρ(y, z) < δ1

Now, by continuity of f , there exists δ2 such that for all ` such that

ρ(`, z) < δ2, σ(f(`), f(z)) < ε/3. As z ∈ ∂Kε/3, there exists ` /∈ Kε/3

such that ρ(`, z) < δ2. Then, putting this all together,

σ(f(x), f(y)) 6 σ(f(x), f(z)) + σ(f(z), f(`)) + σ(f(`), f(y))

< ε/3 + ε/3 + ε/3 = ε

Whence we deduce that f is uniformly continuous.

Date: December 24, 2017.
1



2 KELLER VANDEBOGERT

2. Problem 2

Suppose that ||χEn − f ||1 → 0. In particular, by Chebyshev’s in-

equality, χEn → f in measure, so that we may choose a subsequence

χEnk such that

χEnk → f a.e

Now, for any given x ∈ R, χEnk (x) ∈ {0, 1}, so that in order for

such a subsequence to converge, it must become eventually constant

for almost every x. That is, f(x) ∈ {0, 1} for almost every x. Now,

set E :=
⋃
m>0

⋂
n>m{x | χEnk (x) = 1}. This is certainly measurable

as the union and intersection of measurable sets. By construction, if

x ∈ E, then χEnk (x) = 1 for all k sufficiently large, whence χE = f

almost everywhere, as contended.

3. Problem 3

Let N ∈ N. Then,

ˆ
R
|
N∑
n=1

fn(x)|dx 6
N∑
n=1

ˆ
R
|fn(x)|dx

=
N∑
n=1

ˆ
R

|f(u)|
nα+1

du (u = nx)

6 ||f ||1 ·
N∑
n=1

1

nα+1

Now, let N →∞; we find
ˆ
R

∣∣∣ ∞∑
n=1

∣∣∣dx 6 ||f ||1
∞∑
n=1

1

nα+1
<∞

where
∑∞

n=1
1

nα+1 converges since α > 0. This then tells us that∑∞
n=1 fn(x) is integrable, hence finite almost everywhere. That is,∑∞
n=1 is convergent almost everywhere.



AUGUST 2012 ANALYSIS QUALIFYING EXAM 3

4. Problem 4

(a). Let N ∈ N. Note that

fn(x) =

ˆ x

0

f ′n(t)dt

Then, ∣∣∣ N∑
n=1

fn(x)
∣∣∣ =

∣∣∣ N∑
n=1

ˆ x

0

f ′n(t)dt
∣∣∣

6
N∑
n=1

ˆ x

0

|f ′n(t)|dt

6
∞∑
n=1

ˆ 1

0

|f ′n(t)|dt <∞

Letting N → ∞, this series is bounded, hence convergent for all x ∈

[0, 1].

(b). Let ε > 0. We may find N ∈ N such that

∞∑
n=1

fn(x) <
N∑
n=1

fn(x) + ε/4

Similarly, by absolute continuity of each fn, we may find δn such that

for all intervals {(ak, bk)} with
∑

k bk − ak < δn,∑
k

|fn(bk)− fn(ak)| <
ε

2N

Then, choose δ := minn{δn}. Then, for any set of open intervals with∑
k bk − ak < δ,∑

k

|fn(bk)− fn(ak)| <
∑
k

N∑
n=1

|fn(bk)− fn(ak)|+ ε/2

=
N∑
n=1

∑
k

|fn(bk)− fn(ak)|+ ε/2

<
N∑
n=1

ε

2N
+ ε/2 = ε
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So that f is absolutely continuous.

(c). By splitting into positive and negative parts, we may assume f ′n >

0. Then, using that fact that f is absolutely continuous by part (b),

ˆ 1

0

lim
N→∞

f ′(1)−
N∑
n=1

f ′n(x)dx 6 lim inf
N→∞

ˆ 1

0

f ′(x)−
N∑
n=1

f ′n(x)dx

= lim inf
N→∞

f(1)−
N∑
n=1

f ′n(1)

= f(1)− f(1) = 0

5. Problem 5

If µ(A) = µ(B), then µ(B\A) = 0. Since E\A ⊂ B\A and Lebesgue

measure on R is a complete measure, we deduce that E\A is measurable

and has measure 0. Then,

E = (E\A) ∪ A

is the union of measurable sets, hence measurable, and

µ(E) = µ(E\A) + µ(A) = µ(A)

6. Problem 6

(a). Let f ∈ L2(R). Then, employing Hölder’s inequality,

||χ[−1,1]f ||1 6 ||χ[−1,1]||2||fχ[−1,1]||2

=
√

2||fχ[−1,1]||2

b). Using part (a), we have:

||f ||1 6 ||fχ[−1,1]||1 + ||fχR\[−1,1]||1

6
√

2||f ||2 + ||fχR\[−1,1]||1
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Let us now consider the rightmost term. We see:

||fχR\[−1,1]||1 =

ˆ
R\[−1,1]

fdµ

=

ˆ
R\[−1,1]

g(x)

x
dµ

6
( ˆ

R\[−1,1]

1

x2
dx
)1/2
||g||2 (Hölder’s)

=
√

2||g||2

Combining this with the above, we find:

||f ||1 6
√

2
(
||f ||2 + ||g||2

)
as asserted.

7. Problem 7

Since |pn| → ∞, this sequence cannot have any accumulation point.

Consider now 1
f
. This is bounded and holomorphic away from {pn}, so

that by the Riemann extension theorem we may choose an extension

f̃ such that 1

f̃
extends 1

f
.

Then, this extension is bounded and entire, hence constant by Liou-

ville’s theorem. This then gives that 1
f

is constant, so that f is constant

as well, as desired.

8. Problem 8

Recall that by the Cauchy-Hadamard theorem, lim supn→∞ |an|1/n =

1/R, where R denotes the radius of convergence. We then want to solve

cos(πz) = 0 =⇒ z = (2k + 1)/2, k ∈ N
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Then, the closest singularities to the point z = 1 are located at both

−1/2 and 1/2. Both of these have distance

|i− 1/2| =
√

1 + 1/4 =

√
5

2

so the radius of convergence is
√

5/2. Taking the reciprocal,

lim sup
n→∞

|an|1/n =
2√
5

9. Problem 9

(a). True. Make a change of variable such that I + a = [−π, π]. Then,

ˆ
I

f(x)dx =

ˆ π

−π
f(x− a)dx

=

ˆ π

−π
f(x)dx

Where, by periodicity, f(x) and f(x−a) attain the same values on the

interval [−π, π], whence have the same integral over [−π, π].

(b). True. By maximum modulus principle,

max
|z|=1
|P (z)| > max

z∈B1(0)
|P (z)|

Note that P (0) = 1, so that

1 6 max
|z|=1
|P (z)|

as contended.

(c). False. Suppose f(1/n) = 1/n3. Since {1/n}n∈N has an accumu-

lation point, the identity principle implies that f(z) = z3 everywhere.

However, this then means that f(−1/n) = −1/n3, a contradiction.
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(d). False. Set fn =
χ[0,n]

n
. Then, it is easy to see that

||fn||2 =
1

n
→ 0

However,

||fn||1 = 1 for all n ∈ N

(e). False. Consider fn :=
χ[−n,n]

2n
, f = 0. Then,

|fn − f | <
1

2n
<

1

n

for all x. However,

||fn||1 = 1 > 0

for all n ∈ N.


