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1. Problem 1

Let us first show that this is not a contraction. Note that

||Ω(χ[0,1])− Ω(0)||∞ = sup
x∈[0,1]

∣∣∣ˆ x

0

χ[0,1]dx
∣∣∣

= sup
x∈[0,1]

|x|

= 1 = ||χ[0,1] − 0||∞

Then, by definition, Ω is not a contraction. However, note that:

Ω ◦ Ω(φ)(x) =

ˆ x

0

ˆ x

0

φ(t)dt

=

ˆ x

0

(x− t)φ(t)dt

Then, let φ, ψ ∈ C[0, 1]. We see:

||Ω2(φ)− Ω2(ψ)||∞ = sup
x∈[0,1]

∣∣∣ˆ x

0

(x− t)
(
φ(t)− ψ(t)

)
dt
∣∣∣

6 sup
x∈[0,1]

(ˆ x

0

(x− t)dt
)
||φ− ψ||∞ (Hölder’s)

= sup
x∈[0,1]

x2

2
||φ− ψ||∞

=
1

2
||φ− ψ||∞

So that Ω2 is a contraction with λ = 1/2.
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2. Problem 2

By definition of supremum, for all n ∈ N, there exist an, bn ∈ E such

that

ρ(an, bn) > sup
x,y

ρ(x, y)− 1/n

By compactness of E × E, we may choose a convergent subsequence

(ank
, bnk

)→ (a, b) ∈ E × E. By construction,

ρ(ank
, bnk

) > sup
x,y

ρ(x, y)− 1

nk

So that as k →∞, we see

ρ(a, b) = sup
x,y

ρ(x, y)

as contended.

3. Problem 3

This is uniformly convergent everywhere on [0,∞). To see this, note

that
x

n+ n3x3
6

1

21/3 · n2/3

1

n+ n/2
=

22/3

3

1

n5/3

In which case
∞∑
n=1

x

n+ n3x3
6

∞∑
n=1

22/3

3

1

n5/3
<∞

So that by the Weierstrass M -test, this series converges uniformly ev-

erywhere.

4. Problem 4

(i). Let An := {x | |f(x)| > n}. Then,ˆ 1

0

|f(x)|dx =

ˆ
An

|f(x)|dx+

ˆ
Ac

n

|f(x)|dx

> nm(An) +

ˆ
Ac

n

f(x)dx
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Note that fχAc
n
→ f since any integrable function is finite almost

everywhere, so that by the monotone convergence theorem,

lim
n→∞

ˆ
Ac

n

|f(x)|dx =

ˆ 1

0

f(x)dx

Then, ˆ 1

0

|f(x)|dx > lim sup
n→∞

nm(An) + lim sup
n→∞

ˆ
Ac

n

|f(x)|dx

=⇒ lim sup
n→∞

nm(An) = 0

In which case we deduce limn→∞ nm(An) = 0, as asserted.

(b). Set

f(x) :=

{
−1

x log(x)
, x ∈ (0, e−1)

0 else

Then, f /∈ L1(0, 1) as f has antiderivative log(| log(x)|). However,

given n ∈ N, let xn be such that

−1

xn log(xn)
= n

Then, nxn = −1
log(xn)

, and, as n → ∞, xn → 0, in which case we must

have − log(xn)→∞. But then,

nm(An) = nxn → 0 as n→∞

Yet f /∈ L1(0, 1), so we have a counterexample as desired.

5. Problem 5

Let ε > 0. By absolute continuity of integration, there exists δ such

that µ(S) < δ implies
´
S
|f(x+h)−f(x)|dx < ε/2. By Lusin’s theorem,

there exists a closed set F such that µ(F ) < δ and f is continuous on

F c. Note also thatˆ 1

0

|f(x+ h)− f(x)|dx 6 2||f ||1



4 KELLER VANDEBOGERT

so that by absolute continuity and Lebesgue’s dominated convergence

theorem,

lim
h→0

ˆ 1

0

|f(x+ h)− f(x)|dx = lim
h→0

ˆ
F

|f(x+ h)− f(x)|dx

+ lim
h→0

ˆ
F c

|f(x+ h)− f(x)|dx

< ε/2 +

ˆ
F c

lim
h→0
|f(x+ h)− f(x)|dx

= ε/2 < ε

As ε is arbitrary, we deduce that

lim
h→0

ˆ 1

0

|f(x+ h)− f(x)|dx = 0

6. Problem 6

Note first that fnχE → fχE 6 f ∈ L1. By Lebesgue’s dominated

convergence theorem, we haveˆ
fnχEdx→

ˆ
fχEdx

that is,
´
E
fndx→

´
E
fdx, as contended.

7. Problem 7

Note that by Cauchy’s integral formula,

1

2πi

ˆ
γ

ez − e−z

z4
dz =

1

6
· d

3

dz3
(
ez − e−z

)
(0)

=
1

6
· (e0 + e0) =

1

3

8. Problem 8

Define gn := infk>n fn, where fn is our sequence of functions. Obvi-

ously gn 6 fn, so that ˆ
E

gn 6
ˆ
E

fn
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Since this in fact holds for all n, we have the stronger inequality:

ˆ
E

gn 6 inf
k>n

ˆ
E

fk

Note that gn is an increasing sequence of functions. By Lebesgue’s

monotone convergence theorem,

lim
n→∞

ˆ
E

gn =

ˆ
E

lim
n→∞

gn

Taking the limit in our inequality then yields:

ˆ
E

lim inf
n→∞

fn 6 lim inf
n→∞

ˆ
E

fn

And Fatou’s Lemma is proved.

9. Problem 9

(a). True. By the Arithmetic Geometric mean inequality,

lim sup
n→∞

(x1 . . . xn)1/n 6 lim sup
n→∞

x1 + · · ·+ xn
n

And, by the Cesaro-Stolz theorem,

lim sup
n→∞

x1 + · · ·+ xn
n

6 lim sup
n→∞

xn

so that

lim sup
n→∞

(x1 . . . xn)1/n 6 lim sup
n→∞

xn

(b). False. If such an f existed, Bessel’s inequality gives

∞∑
n=1

1

n
6
ˆ π

−π
|f(x)|2dx

so that f /∈ L2(−π, π).
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(c). True. Let f be as given. Then, using absolute continuity,

|f(b)− f(a)| =
∣∣∣ ˆ b

a

f ′(x)dx
∣∣∣

6
ˆ b

a

|f ′(x)|dx

6 ||f ′||p|b− a|1−1/p (Hölder’s)

Whence we may take C := ||f ′||p.

(d). False. Take f(z) := z. In order for this to be true, we need that

f must have no zeroes on the interior.

(e). False. If inf{|b − a| | a ∈ A, b ∈ B} = 0, then, by definition of

infimum there exists an ∈ A such that

d(an, B) < frm[o]−−/n

By compactness we may choose a convergent subsequence ank
→ a ∈ A.

Then, it is clear that a satisfies d(a,B) = 0, in which case a ∈ B.

Since B is closed, B = B, so that a ∈ B, which is a contradiction to

disjointness.


