

AUGUST 2011 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Let us first show that this is not a contraction. Note that

$$\begin{aligned} \|\Omega(\chi_{[0,1]}) - \Omega(0)\|_\infty &= \sup_{x \in [0,1]} \left| \int_0^x \chi_{[0,1]} dx \right| \\ &= \sup_{x \in [0,1]} |x| \\ &= 1 = \|\chi_{[0,1]} - 0\|_\infty \end{aligned}$$

Then, by definition, Ω is not a contraction. However, note that:

$$\begin{aligned} \Omega \circ \Omega(\phi)(x) &= \int_0^x \int_0^x \phi(t) dt \\ &= \int_0^x (x-t)\phi(t) dt \end{aligned}$$

Then, let $\phi, \psi \in C[0, 1]$. We see:

$$\begin{aligned} \|\Omega^2(\phi) - \Omega^2(\psi)\|_\infty &= \sup_{x \in [0,1]} \left| \int_0^x (x-t)(\phi(t) - \psi(t)) dt \right| \\ &\leq \sup_{x \in [0,1]} \left(\int_0^x (x-t) dt \right) \|\phi - \psi\|_\infty \quad (\text{Hölder's}) \\ &= \sup_{x \in [0,1]} \frac{x^2}{2} \|\phi - \psi\|_\infty \\ &= \frac{1}{2} \|\phi - \psi\|_\infty \end{aligned}$$

So that Ω^2 is a contraction with $\lambda = 1/2$.

Date: December 24, 2017.

2. PROBLEM 2

By definition of supremum, for all $n \in \mathbb{N}$, there exist $a_n, b_n \in E$ such that

$$\rho(a_n, b_n) > \sup_{x,y} \rho(x, y) - 1/n$$

By compactness of $E \times E$, we may choose a convergent subsequence $(a_{n_k}, b_{n_k}) \rightarrow (a, b) \in E \times E$. By construction,

$$\rho(a_{n_k}, b_{n_k}) > \sup_{x,y} \rho(x, y) - \frac{1}{n_k}$$

So that as $k \rightarrow \infty$, we see

$$\rho(a, b) = \sup_{x,y} \rho(x, y)$$

as contended.

3. PROBLEM 3

This is uniformly convergent everywhere on $[0, \infty)$. To see this, note that

$$\frac{x}{n + n^3 x^3} \leq \frac{1}{2^{1/3} \cdot n^{2/3}} \frac{1}{n + n/2} = \frac{2^{2/3}}{3} \frac{1}{n^{5/3}}$$

In which case

$$\sum_{n=1}^{\infty} \frac{x}{n + n^3 x^3} \leq \sum_{n=1}^{\infty} \frac{2^{2/3}}{3} \frac{1}{n^{5/3}} < \infty$$

So that by the Weierstrass M -test, this series converges uniformly everywhere.

4. PROBLEM 4

(i). Let $A_n := \{x \mid |f(x)| > n\}$. Then,

$$\begin{aligned} \int_0^1 |f(x)| dx &= \int_{A_n} |f(x)| dx + \int_{A_n^c} |f(x)| dx \\ &\geq n m(A_n) + \int_{A_n^c} f(x) dx \end{aligned}$$

Note that $f\chi_{A_n^c} \rightarrow f$ since any integrable function is finite almost everywhere, so that by the monotone convergence theorem,

$$\lim_{n \rightarrow \infty} \int_{A_n^c} |f(x)| dx = \int_0^1 f(x) dx$$

Then,

$$\begin{aligned} \int_0^1 |f(x)| dx &\geq \limsup_{n \rightarrow \infty} nm(A_n) + \limsup_{n \rightarrow \infty} \int_{A_n^c} |f(x)| dx \\ &\implies \limsup_{n \rightarrow \infty} nm(A_n) = 0 \end{aligned}$$

In which case we deduce $\lim_{n \rightarrow \infty} nm(A_n) = 0$, as asserted.

(b). Set

$$f(x) := \begin{cases} \frac{-1}{x \log(x)}, & x \in (0, e^{-1}) \\ 0 & \text{else} \end{cases}$$

Then, $f \notin L^1(0, 1)$ as f has antiderivative $\log(|\log(x)|)$. However, given $n \in \mathbb{N}$, let x_n be such that

$$\frac{-1}{x_n \log(x_n)} = n$$

Then, $nx_n = \frac{-1}{\log(x_n)}$, and, as $n \rightarrow \infty$, $x_n \rightarrow 0$, in which case we must have $-\log(x_n) \rightarrow \infty$. But then,

$$nm(A_n) = nx_n \rightarrow 0 \text{ as } n \rightarrow \infty$$

Yet $f \notin L^1(0, 1)$, so we have a counterexample as desired.

5. PROBLEM 5

Let $\epsilon > 0$. By absolute continuity of integration, there exists δ such that $\mu(S) < \delta$ implies $\int_S |f(x+h) - f(x)| dx < \epsilon/2$. By Lusin's theorem, there exists a closed set F such that $\mu(F) < \delta$ and f is continuous on F^c . Note also that

$$\int_0^1 |f(x+h) - f(x)| dx \leq 2\|f\|_1$$

so that by absolute continuity and Lebesgue's dominated convergence theorem,

$$\begin{aligned}
\lim_{h \rightarrow 0} \int_0^1 |f(x+h) - f(x)| dx &= \lim_{h \rightarrow 0} \int_F |f(x+h) - f(x)| dx \\
&\quad + \lim_{h \rightarrow 0} \int_{F^c} |f(x+h) - f(x)| dx \\
&< \epsilon/2 + \int_{F^c} \lim_{h \rightarrow 0} |f(x+h) - f(x)| dx \\
&= \epsilon/2 < \epsilon
\end{aligned}$$

As ϵ is arbitrary, we deduce that

$$\lim_{h \rightarrow 0} \int_0^1 |f(x+h) - f(x)| dx = 0$$

6. PROBLEM 6

Note first that $f_n \chi_E \rightarrow f \chi_E \leq f \in L^1$. By Lebesgue's dominated convergence theorem, we have

$$\int f_n \chi_E dx \rightarrow \int f \chi_E dx$$

that is, $\int_E f_n dx \rightarrow \int_E f dx$, as contended.

7. PROBLEM 7

Note that by Cauchy's integral formula,

$$\begin{aligned}
\frac{1}{2\pi i} \int_{\gamma} \frac{e^z - e^{-z}}{z^4} dz &= \frac{1}{6} \cdot \frac{d^3}{dz^3} (e^z - e^{-z})(0) \\
&= \frac{1}{6} \cdot (e^0 + e^0) = \frac{1}{3}
\end{aligned}$$

8. PROBLEM 8

Define $g_n := \inf_{k \geq n} f_n$, where f_n is our sequence of functions. Obviously $g_n \leq f_n$, so that

$$\int_E g_n \leq \int_E f_n$$

Since this in fact holds for all n , we have the stronger inequality:

$$\int_E g_n \leq \inf_{k \geq n} \int_E f_k$$

Note that g_n is an increasing sequence of functions. By Lebesgue's monotone convergence theorem,

$$\lim_{n \rightarrow \infty} \int_E g_n = \int_E \lim_{n \rightarrow \infty} g_n$$

Taking the limit in our inequality then yields:

$$\int_E \liminf_{n \rightarrow \infty} f_n \leq \liminf_{n \rightarrow \infty} \int_E f_n$$

And Fatou's Lemma is proved.

9. PROBLEM 9

(a). True. By the Arithmetic Geometric mean inequality,

$$\limsup_{n \rightarrow \infty} (x_1 \dots x_n)^{1/n} \leq \limsup_{n \rightarrow \infty} \frac{x_1 + \dots + x_n}{n}$$

And, by the Cesaro-Stolz theorem,

$$\limsup_{n \rightarrow \infty} \frac{x_1 + \dots + x_n}{n} \leq \limsup_{n \rightarrow \infty} x_n$$

so that

$$\limsup_{n \rightarrow \infty} (x_1 \dots x_n)^{1/n} \leq \limsup_{n \rightarrow \infty} x_n$$

(b). False. If such an f existed, Bessel's inequality gives

$$\sum_{n=1}^{\infty} \frac{1}{n} \leq \int_{-\pi}^{\pi} |f(x)|^2 dx$$

so that $f \notin L^2(-\pi, \pi)$.

(c). True. Let f be as given. Then, using absolute continuity,

$$\begin{aligned} |f(b) - f(a)| &= \left| \int_a^b f'(x)dx \right| \\ &\leq \int_a^b |f'(x)|dx \\ &\leq \|f'\|_p |b - a|^{1-1/p} \quad (\text{Hölder's}) \end{aligned}$$

Whence we may take $C := \|f'\|_p$.

(d). False. Take $f(z) := z$. In order for this to be true, we need that f must have no zeroes on the interior.

(e). False. If $\inf\{|b - a| \mid a \in A, b \in B\} = 0$, then, by definition of infimum there exists $a_n \in A$ such that

$$d(a_n, B) < \text{frm}[o]--/n$$

By compactness we may choose a convergent subsequence $a_{n_k} \rightarrow a \in A$. Then, it is clear that a satisfies $d(a, B) = 0$, in which case $a \in \overline{B}$. Since B is closed, $B = \overline{B}$, so that $a \in B$, which is a contradiction to disjointness.