AUGUST 2011 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Let us first show that this is not a contraction. Note that

12001) = 201 = s | [“xions

z€[0,1

= sup |z|
z€[0,1]

=1=|x0.1 = 0/l

Then, by definition, €2 is not a contraction. However, note that:

Qo Q¢ //¢

_ / (z — 1)o(t)dt

0

Then, let ¢, ¥ € C[0, 1]. We see:

19%(¢) — Q*(¢)[|oc = sup

z€[0,1]

< sup (/Ox(w—t)dt)H(b—wHoo (Holder’s)

z€[0,1]

[ @060 - vi)a]

2
T
= sup Zlg— vl
z€(0,1]
1
Lo - vl

So that Q% is a contraction with A = 1/2.
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2. PROBLEM 2

By definition of supremum, for all n € N, there exist a,,, b, € F such

that

p(an7bn) > sup p(x,y) o 1/”
.y

By compactness of E x E, we may choose a convergent subsequence
(an,,bn,) — (a,b) € E x E. By construction,

1
P(Cny s bry) > sup p(z,y) — —
ng

x?y
So that as k — oo, we see
pla,b) = sup p(z,y)
Y

as contended.

3. PROBLEM 3

This is uniformly convergent everywhere on [0, c0). To see this, note
that
v 1 1 228
n+ndzd  23.n2B8n4n/2 3 ndB

In which case
> T =, 22/3 1

Zn+n3x3 <ZI?W<OO

So that by the Weierstrass M-test, this series converges uniformly ev-

erywhere.

4. PROBLEM 4

(1). Let A, :={z | |f(x)| > n}. Then,

/01 ’f(x)|d$=/n]f(x)]dx+/4 | (2)|dz

c
n

>nm(A,) + [ fz)dx
A
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Note that fxa. — f since any integrable function is finite almost

everywhere, so that by the monotone convergence theorem,

lim |f(x)|dz :/0 f(z)dz

n—00 [ 4c
n

Then,

/ |f(z)|dz > limsupnm(A,) + lim sup/ |f(z)|dz
0 A

n—oo n—oo %

—> limsupnm(A,) =0

n—o0

In which case we deduce lim,,_,., nm(A,) = 0, as asserted.
(b). Set

0 else

—1 -1
f(z) = {xlog(ﬂv)’ v € (0,e7)
Then, f ¢ L'(0,1) as f has antiderivative log(|log(x)|). However,
given n € N, let x,, be such that

-1

xp, log(xy,) -

—1
log(zn)’

Then, nx, = and, as n — 0o, x, — 0, in which case we must

have — log(z,) — oo. But then,
nm(A,) = nx, - 0asn — oo

Yet f ¢ L'(0,1), so we have a counterexample as desired.

5. PROBLEM b5

Let € > 0. By absolute continuity of integration, there exists ¢ such
that 1(S) < ¢ implies [, |f(z+h)—f(z)|dx < €/2. By Lusin’s theorem,
there exists a closed set I such that u(F) < 6 and f is continuous on

F¢. Note also that

/0 e+ h) — F()ldz < 21/
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so that by absolute continuity and Lebesgue’s dominated convergence

theorem,
1
ggA|ﬂx+m—fuwng%ﬂjﬂx+m—f@wm

#lim [ [+ h) ~ f@)lds

0 J e
< e/2+/FC }lllir[l)|f(x+h) — f(z)|dz
=€/2<e

As € is arbitrary, we deduce that
1
lim/ |[f(z+h)— f(x)|de =0
h—=0 Jq

6. PROBLEM 6

Note first that f,xz — fxr < f € L'. By Lebesgue’s dominated

convergence theorem, we have

[ foxde = [ s

that is, [, fodz — [, fdz, as contended.

7. PROBLEM 7

Note that by Cauchy’s integral formula,

1 e — e ? 1 &3
SR e Ly ()
omi ), 4 6 (&0
1 1
:6'(60—1—60):5

8. PROBLEM 8

Define g, := infy>, f., where f, is our sequence of functions. Obvi-

é%ééh

ously g, < f., so that
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Since this in fact holds for all n, we have the stronger inequality:

oy
/Egn\éng/Efk

Note that g, is an increasing sequence of functions. By Lebesgue’s

monotone convergence theorem,

lim | g, = / lim g,

Taking the limit in our inequality then yields:

/ liminf f,, < liminf / fn
g Moo n—00 E

And Fatou’s Lemma is proved.

9. PROBLEM 9

(a). True. By the Arithmetic Geometric mean inequality,

: : T+t
limsup(z; ... 2,)"" < limsup ——— "
n—o0 n—oo n

And, by the Cesaro-Stolz theorem,

. Ty Ty
limsup —— < limsup z,,
n—oo n n—oo

so that

lim sup(zy . .. 2,,)""™ < limsup z,,

n—o0 n—o0

(b). False. If such an f existed, Bessel’s inequality gives
>t [Cinwpa
n=1 n h -n

so that f ¢ L*(—m, 7).
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(c). True. Let f be as given. Then, using absolute continuity,
b
£0) = £@)| = | [ Fla)da]

b
< [ 1@l
<IF)plb = a|' VP (Hélder’s)
Whence we may take C' := ||f’|]p,

(d). False. Take f(z) := z. In order for this to be true, we need that

f must have no zeroes on the interior.

(e). False. If inf{|b —a| | a € A, b € B} = 0, then, by definition of
infimum there exists a,, € A such that
d(an, B) < frm[o]——/n

By compactness we may choose a convergent subsequence a,, — a € A.
Then, it is clear that a satisfies d(a, B) = 0, in which case a € B.
Since B is closed, B = B, so that a € B, which is a contradiction to

disjointness.



