AUGUST 2009 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. PROBLEM 1

Confer problem 1 of the August 2012 qualifying exam for a more
general version of this problem.

We may find N € N such that for all |z| > N, f(z) < €/2. Then,
fli=~,n is uniformly continuous by compactness of [N, N]. Similarly,
flr\[=n,n7 is uniformly continuous since for all z, y € R\[-N, N],

[f () = F)l < [f(@)] + ()]

<€
It remains only to show uniformity in the ”"boundary” case. We ay
choose M € N such that for all |y| > M, |f(y)| < €/6.
By uniform continuity of f|_s,a, there exists d; such that for all a,

be|—-M,M],

la =0 <d = [f(a) = F(O)] < ¢/3

Suppose now that x € [-M, M|, y ¢ [—M, M| with |z — y| < /2.
Then, we may also find z € J[—M, M| with |y — z| < §;/2, whence

v —z|<|z—y|+|y—2| <&

By continuity of f, there exists d, such that for all £ with |¢ — z| < ds,
1f(0)— f(2)] <€/3. As z € I[—M, M]. we may find ¢ ¢ [—M, M] with
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|0 — z| < 09, so that
[f(@) = f(W)l <|f(@) = FR+1F(2) = FOL+1F0) = fy)l

<€+€+€+E_
3737676 ¢

In which case f is uniformly continuous.

2. PROBLEM 2

Since f* € LY(X) for all n, we deduce that lim,,_,., f" is finite almost

everywhere; that is f™ < 1 almost everywhere. Now, set

=A{z [ |f(z)] <1}

/dex:/xf"dm
:/Sf”d:c—l—/cdaj
</Scf+/sfd:p

:>/Xf"dx</xfdx

Which is a contradiction to our assumption, in which case we must

If m(S) > 0, then

have m(S) = 0; then, combining this with the above observation, we

have that f =1 almost everywhere. Set

E = {o] (@)= 1}

The above is clearly measurable by writing £ = ({z | f(z) < 1} U{z |

f(z) > 1})c. By construction, we also have that

fle=1=xele

and, as E° is the union of two null sets, £ has measure 0, whence

f = xg almost everywhere, as contended.
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3. PROBLEM 3

By absolute continuity, we may write

)~ 101 =] [ s
Then,
) - 161 = [ s

< [ 17
Y
<2 |l —y|Y?  (Hélder’s)

Whence we may take M := ||f’||2.

4. PROBLEM 4

(a). Note that f is continuous and [0,1] is compact by Heine-Borel.
Any continuous f on a compact set is uniformly continuous, so that f

is uniformly continuous on [0, 1].
(b). Observe the the inequality

Ve — vyl < Ve + vyl
is trivially true by the triangle inequality. Now, simply multiply the

above by |z — /y|'/*:
Va =yl < IVz + gl Ve =yl

= |z —y
In which case

1f(z) = fly)] < |z —y|'/?

1 [t
1l =1 [ o= o0

(¢). f'(x) = 5.7, and,

so that f" ¢ L*(0,1).
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5. PROBLEM b5

Assume first (by splitting into positive and negative parts) that f is

nonnegative. Then, note that

(uxu)(E)Z/d(uxu)

E

Now, set
S:={(z,t) |0<t < f(x)}
Shi={(z,t) |0<t < f(2)}

Obviously £ = S'\S by definition, and,

[ s = [ | " duttydn(e)

_ / f(@)du(z)

[ awx e = [ [ auwaut

- / F () du(x)

In which case

[ dx e = [ e

S\S

:/Rf(:v)du(x)—/Rf(x)dﬂ(m)
=0

So that (u x p)(E) =0, as desired.

6. PROBLEM 6

Make the change of variable z = ¢, so that as x goes from 0 to 27,

we end up integrating z over the unit circle. Then,

dz = ie®dr = dx = %
1z
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And,

62:17

sin(z) = —— <" (="~ 1)

— 1 =
5 sin(x)

Letting C' denote the unit circle, our integral becomes

/ 1 dz / —4dizdz
02— G2 gy [1822 — 24 4222 1

422
B / 4izdz
 Jo A —1022+1

Now, let us find the roots of the denominator:

A 1022 41=0 = 22=5+2V6

In which case we have 4 roots:

z=1/5+2V6, —\/5+2x/6, \/5—2\/6, —\/5—2¢6

Note that the first two roots above do not lie in the unit circle, so they

may be ignored when computing the integral. It remains to compute

the residues at

4i(z — /5 —2v/6)z , 4iz

lim 1 5 = lim
co/oave 4 102841 a—/5-2v6 (2 + V5 — 2v/6) (22 — 5 — 2/6)

—1

_ 4i(z + /5 —2v6)z _ 4iz
lim = lim

oo Z 102241 cs/5-2v6 (2 — V5 — 26) (22 — 5 — 21/6)

—1

~ 26

Whence, by Cauchy’s residue theorem,

/ dizsz 27

ozt —=10224+1 /6

Now, since the integral in the problem has bounds 0 to /2, we simply
divide the above by 4 to find

|2'mf7r/2 du S
O 24sin’(z) 26
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The above can actually be solved by the standard tangent half angle
substitution, but I assumed that problem was intended to be done via

contour integration.

7. PROBLEM 7

Since |p,| — oo, this sequence cannot have any accumulation point.
Consider now f This is bounded and holomorphic away from {p, }, so
that by the Riemann extension theorem we may choose an extension
fsuch that % extends %

Then, this extension is bounded and entire, hence constant by Liou-
ville’s theorem. This then gives that % is constant, so that f is constant
as well, as desired.

8. PROBLEM 8

Since we are on a bounded domain and F' is continuous, we may
employ Morera’s theorem (note F' is continuous since f is). Let -~ :

[0,1] — C be any smooth closed contour contained in ; we see:

[ Fenz = [ Faw) s

//f '(s)dtds
/ / fly (s)dsdt
:/a /Wf(z,t)dzdt

=0

Where changing the order of integration is justified since both itnegrals

exist and are finite, and the final equality follows by Cauchy’s integral
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theorem. As « was arbitrary, Morera’s theorem allows us to deduce
that F' is holomorphic in €.
Now, let v : [0,1] — C be any smooth closed contour contained in

2. We compute using Cauchy’s integral formula:

_n! F(§) ¢

2 J., & — z)ntl

_nb [P F((s'(s)
2mi Jo (v(s) — 2)"*!

iy / ), 07(s)

2w fy Jo GG =2

[ 06070,
‘2m'/Q/o (y(s) — ot O

* nl f(&1)
/a %[y@—z)"ﬂdf
_ [t
), 0z

Which gives our derivative formula.

(z,t)dt

9. PROBLEM 9
(a). False. Take

O = | J Bejonr1(q)
qeQ

Where € < 1. Then, this has measure < € and is open as the union of

open sets, so that

m([0,1\O) > 1 —¢
And, as O contains a dense subset of [0, 1], it is itself dense in [0, 1].
(b). False. Recall that compactness in a general metric space is equiv-

alent to being complete and totally bounded, so let us choose a non-

complete space. Define f(z) := x( /5 () on the set [0,2] N Q with the
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induced topology. Then,
FY{1}) = [0,v2] N Q is closed
F7H{0}) = [vV2,2] N Q is closed
f71({0, 1}) =1[0,2] N Q is closed
So that the preimage of every closed set of Im(f) is closed, in which
case f is continuous by definition?.
Now, by density of Q i R, we may find z,, € [0,v/2] N Q and y, €
[V2,2] N Q with

1 1
|xn—\/§]<—, \yn—\/§|<—
2n 2n

Then,

|Tn — yn| < |$n_\/§|+’yn_\/§|

1
< J—
n
So that |z, —y,| — 0 as n — oo, but |f(x,) — f(yn)| = 1 for all n, so

this is certainly not uniformly continuous.

(c). False. Consider the following sequence of intervals by setting [, =
(k—=1)/j,k/j) for 1 < k < jand I;; = [(j —1)/j,1]. Then, as j,
k — oo, obviously pu(lx) — 0, in which case pu(f5,) — 1. However,
note that

limsup [;;, = [0, 1]

jik—00

In which case we see that every point misses infinitely often, so that

certainly no subsequence will satisfy the requirement of the problem.

(d). False. The function 1/2? satisfies these requirements but obviously
has a pole of order 2 at 0.

INote the difference between R and Q, where characteristic functions are never
continuous. The above proof does not work over [0,2], since f~1({0}) = (v/2,2] is
no longer closed.
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(e). True.
1> falla <D falls < o0
n=1 n=1

whence Y| f, is finite almost everywhere, so that f,(z) — 0 almost

everywhere.



