
AUGUST 2009 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

Confer problem 1 of the August 2012 qualifying exam for a more

general version of this problem.

We may find N ∈ N such that for all |x| > N , f(x) < ε/2. Then,

f |[−N,N ] is uniformly continuous by compactness of [−N,N ]. Similarly,

f |R\[−N,N ] is uniformly continuous since for all x, y ∈ R\[−N,N ],

|f(x)− f(y)| 6 |f(x)|+ |f(y)|

< ε

It remains only to show uniformity in the ”boundary” case. We ay

choose M ∈ N such that for all |y| > M , |f(y)| < ε/6.

By uniform continuity of f |[−M,M ], there exists δ1 such that for all a,

b ∈ [−M,M ],

|a− b| < δ1 =⇒ |f(a)− f(b)| < ε/3

Suppose now that x ∈ [−M,M ], y /∈ [−M,M ] with |x − y| < δ1/2.

Then, we may also find z ∈ ∂[−M,M ] with |y − z| < δ1/2, whence

|x− z| 6 |x− y|+ |y − z| < δ1

By continuity of f , there exists δ2 such that for all ` with |`− z| < δ2,

|f(`)− f(z)| < ε/3. As z ∈ ∂[−M,M ]. we may find ` /∈ [−M,M ] with
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|`− z| < δ2, so that

|f(x)− f(y)| 6 |f(x)− f(z)|+ |f(z)− f(`)|+ |f(`)− f(y)|

<
ε

3
+
ε

3
+
ε

6
+
ε

6
= ε

In which case f is uniformly continuous.

2. Problem 2

Since fn ∈ L1(X) for all n, we deduce that limn→∞ f
n is finite almost

everywhere; that is fn 6 1 almost everywhere. Now, set

S := {x | |f(x)| < 1}

If m(S) > 0, then ˆ
X

fdx =

ˆ
X

fndx

=

ˆ
S

fndx+

ˆ
Sc

dx

<

ˆ
Sc

f +

ˆ
S

fdx

=⇒
ˆ
X

fndx <

ˆ
X

fdx

Which is a contradiction to our assumption, in which case we must

have m(S) = 0; then, combining this with the above observation, we

have that f ≡ 1 almost everywhere. Set

E := {x | f(x) = 1}

The above is clearly measurable by writing E = ({x | f(x) < 1} ∪ {x |

f(x) > 1})c. By construction, we also have that

f |E ≡ 1 ≡ χE|E

and, as Ec is the union of two null sets, Ec has measure 0, whence

f = χE almost everywhere, as contended.
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3. Problem 3

By absolute continuity, we may write

|f(x)− f(y)| =
∣∣∣ ˆ x

y

f ′(t)dt
∣∣∣

Then,

|f(x)− f(y)| =
∣∣∣ ˆ x

y

f ′(t)dt
∣∣∣

6
ˆ x

y

|f ′(t)|dt

6 ||f ′||2 · |x− y|1/2 (Hölder’s)

Whence we may take M := ||f ′||2.

4. Problem 4

(a). Note that f is continuous and [0, 1] is compact by Heine-Borel.

Any continuous f on a compact set is uniformly continuous, so that f

is uniformly continuous on [0, 1].

(b). Observe the the inequality

|
√
x−√y|1/2 6 |

√
x+
√
y|1/2

is trivially true by the triangle inequality. Now, simply multiply the

above by |
√
x−√y|1/2:

|
√
x−√y| 6 |

√
x+
√
y|1/2 · |

√
x−√y|1/2

= |x− y|1/2

In which case

|f(x)− f(y)| 6 |x− y|1/2

(c). f ′(x) = 1
2
√
x
, and,

||f ′||2 =
1

4

ˆ 1

0

1

x
dx =∞

so that f ′ /∈ L2(0, 1).
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5. Problem 5

Assume first (by splitting into positive and negative parts) that f is

nonnegative. Then, note that

(µ× µ)(E) =

ˆ
E

d(µ× µ)

Now, set

S := {(x, t) | 0 6 t < f(x)}

S ′ := {(x, t) | 0 6 t 6 f(x)}

Obviously E = S ′\S by definition, and,
ˆ
S

d(µ× µ)(x, t) =

ˆ
R

ˆ f(x)

0

dµ(t)dµ(x)

=

ˆ
R
f(x)dµ(x)

ˆ
S′
d(µ× µ)(x, t) =

ˆ
R

ˆ f(x)

0

dµ(t)dµ(x)

=

ˆ
R
f(x)dµ(x)

In which caseˆ
E

d(µ× µ)(x, t) =

ˆ
S′\S

d(µ× µ)

=

ˆ
R
f(x)dµ(x)−

ˆ
R
f(x)dµ(x)

= 0

So that (µ× µ)(E) = 0, as desired.

6. Problem 6

Make the change of variable z = eix, so that as x goes from 0 to 2π,

we end up integrating z over the unit circle. Then,

dz = ieixdx =⇒ dx =
dz

iz
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And,

sin(x) =
eix − e−ix

2i
=⇒ sin(x) =

(z2 − 1)

2iz

Letting C denote the unit circle, our integral becomesˆ
C

1

2− (z2−1)2
4z2

· dz
iz

=

ˆ
C

−4izdz

8z2 − z4 + 2z2 − 1

=

ˆ
C

4izdz

z4 − 10z2 + 1

Now, let us find the roots of the denominator:

z4 − 10z2 + 1 = 0 =⇒ z2 = 5± 2
√

6

In which case we have 4 roots:

z =

√
5 + 2

√
6, −

√
5 + 2

√
6,

√
5− 2

√
6, −

√
5− 2

√
6

Note that the first two roots above do not lie in the unit circle, so they

may be ignored when computing the integral. It remains to compute

the residues at

lim
z→
√

5−2
√
6

4i(z −
√

5− 2
√

6)z

z4 − 10z2 + 1
= lim

z→
√

5−2
√
6

4iz

(z +
√

5− 2
√

6)(z2 − 5− 2
√

6)

=
−i

2
√

6

lim
z→−
√

5−2
√
6

4i(z +
√

5− 2
√

6)z

z4 − 10z2 + 1
= lim

z→−
√

5−2
√
6

4iz

(z −
√

5− 2
√

6)(z2 − 5− 2
√

6)

=
−i

2
√

6
Whence, by Cauchy’s residue theorem,ˆ

C

4izsz

z4 − 10z2 + 1
=

2π√
6

Now, since the integral in the problem has bounds 0 to π/2, we simply

divide the above by 4 to find

|intπ/20

dx

2 + sin2(x)
=

π

2
√

6



6 KELLER VANDEBOGERT

The above can actually be solved by the standard tangent half angle

substitution, but I assumed that problem was intended to be done via

contour integration.

7. Problem 7

Since |pn| → ∞, this sequence cannot have any accumulation point.

Consider now 1
f
. This is bounded and holomorphic away from {pn}, so

that by the Riemann extension theorem we may choose an extension

f̃ such that 1

f̃
extends 1

f
.

Then, this extension is bounded and entire, hence constant by Liou-

ville’s theorem. This then gives that 1
f

is constant, so that f is constant

as well, as desired.

8. Problem 8

Since we are on a bounded domain and F is continuous, we may

employ Morera’s theorem (note F is continuous since f is). Let γ :

[0, 1]→ C be any smooth closed contour contained in Ω; we see:

ˆ
γ

F (z)dz =

ˆ 1

0

F (γ(s))γ′(s)ds

=

ˆ 1

0

ˆ b

a

f(γ(s), t)γ′(s)dtds

=

ˆ b

a

ˆ 1

0

f(γ(s), t)γ′(s)dsdt

=

ˆ b

a

ˆ
γ

f(z, t)dzdt

= 0

Where changing the order of integration is justified since both itnegrals

exist and are finite, and the final equality follows by Cauchy’s integral
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theorem. As γ was arbitrary, Morera’s theorem allows us to deduce

that F is holomorphic in Ω.

Now, let γ : [0, 1] → C be any smooth closed contour contained in

Ω. We compute using Cauchy’s integral formula:

F (n)(z) =
n!

2πi

ˆ
γ

F (ξ)

ξ − z)n+1
dξ

=
n!

2πi

ˆ 1

0

F (γ(s)γ′(s)

(γ(s)− z)n+1
ds

=
n!

2πi

ˆ 1

0

ˆ b

a

f(γ(s), t)γ′(s)

(γ(s)− z)n+1
dtds

=
n!

2πi

ˆ b

a

ˆ 1

0

f(γ(s), t)γ′(s)

(γ(s)− z)n+1
dsdt

ˆ b

a

n!

2πi

ˆ
γ

f(ξ, t)

(ξ − z)n+1
dξ

=

ˆ b

a

∂nf

∂zn
(z, t)dt

Which gives our derivative formula.

9. Problem 9

(a). False. Take

O :=
⋃
q∈Q

Bε/2n+1(q)

Where ε < 1. Then, this has measure 6 ε and is open as the union of

open sets, so that

m([0, 1]\O) > 1− ε

And, as O contains a dense subset of [0, 1], it is itself dense in [0, 1].

(b). False. Recall that compactness in a general metric space is equiv-

alent to being complete and totally bounded, so let us choose a non-

complete space. Define f(x) := χ[0,
√
2](x) on the set [0, 2]∩Q with the
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induced topology. Then,

f−1({1}) = [0,
√

2] ∩Q is closed

f−1({0}) = [
√

2, 2] ∩Q is closed

f−1({0, 1}) = [0, 2] ∩Q is closed

So that the preimage of every closed set of Im(f) is closed, in which

case f is continuous by definition1.

Now, by density of Q i R, we may find xn ∈ [0,
√

2] ∩ Q and yn ∈

[
√

2, 2] ∩Q with

|xn −
√

2| < 1

2n
, |yn −

√
2| < 1

2n

Then,

|xn − yn| 6 |xn −
√

2|+ |yn −
√

2|

<
1

n
So that |xn − yn| → 0 as n→∞, but |f(xn)− f(yn)| = 1 for all n, so

this is certainly not uniformly continuous.

(c). False. Consider the following sequence of intervals by setting Ij,k =

[(k − 1)/j, k/j) for 1 6 k < j and Ij,j = [(j − 1)/j, 1]. Then, as j,

k → ∞, obviously µ(Ij,k) → 0, in which case µ(Icj,k) → 1. However,

note that

lim sup
j,k→∞

Ij,k = [0, 1]

In which case we see that every point misses infinitely often, so that

certainly no subsequence will satisfy the requirement of the problem.

(d). False. The function 1/z2 satisfies these requirements but obviously

has a pole of order 2 at 0.

1Note the difference between R and Q, where characteristic functions are never
continuous. The above proof does not work over [0, 2], since f−1({0}) = (

√
2, 2] is

no longer closed.
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(e). True.

||
∞∑
n=1

fn||2 6
∞∑
n=1

||fn||2 <∞

whence
∑∞

n=1 fn is finite almost everywhere, so that fn(x)→ 0 almost

everywhere.


