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1. Problem 1

Let x0 ∈ X and define xn inductively by xn = Ω(xn−1). Then, we

can show that (xn)n∈N is Cauchy as for m > n,

ρ(xn, xm) 6 ρ(xm, xm−1) + · · ·+ ρ(xn+1, xn)

6
(
λm−1 + λm−2 + · · ·+ λn

)
ρ(x1, x0)

=
λn − λm

1− λ
ρ(x1, x0)→ 0 as m, n→∞

By completeness of X, we deduce that xn → x ∈ X. Now, consider

Ω(x); we want to show that x must be a fixed point:

ρ(Ω(x), x) 6 ρ(x, xn+1) + ρ(xn+1,Ω(x))

6 ρ(x, xn+1) + λρ(xn, x)

Letting n→∞ on the right, this must tend to 0, in which case

ρ(x,Ω(x)) = 0

That is, Ω(x) = x. Lastly, it remains to show uniqueness. Suppose

then that x and y are two fixed points of Ω; then:

ρ(x, y) = ρ(Ω(x),Ω(y)) 6 λρ(x, y)

Since λ < 1, we must have ρ(x, y) = 0, so that x = y.
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2. Problem 2

Let ε > 0 and set lim supn→∞ xn := L. Then, there exists N ∈ N

such that for all n > N ,

xn < L+ ε

Then,

n∑
k=1

xk =
N∑
k=1

xk +
n∑

k=N+1

xk

<
N∑
k=1

xk + (L+ ε)(n−N)

=⇒
∑n

k=1 xk
n

<

∑N
k=1 xk
n

+ (L+ ε)
(

1− N

n

)
Taking the limit superior of the above,

lim sup
n→∞

x1 + · · ·+ xn
n

6 L+ ε

And as ε is arbitrary,

lim sup
n→∞

x1 + · · ·+ xn
n

6 lim sup
n→∞

xn

As asserted.

3. Problem 3

Note that for n > 2,

xn

log(n+ 1)
6 xn

so that

(1− x)
∞∑
n=1

xn

log(n+ 1)
6 (1− x)

( x

log(2)
+

x2

1− x)

Letting x→ 1, the above remains bounded so that our sum is bounded

by a uniformly convergent series, hence itself uniformly convergent.
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Now, it remains to compute Mn. We see that xn(1 − x) attains its

maximum at x = n
n+1

, whence

Mn =

(
n

n+1

)n
(n+ 1) log(n+ 1)

Note that
(

n
n+1

)n
→ 1

e
as n→∞, and

(
n

n+1

)n
> 1

4
for all n. Then,

∞∑
n=1

Mn >
1

4

∞∑
n=1

1

(n+ 1) log(n+ 1)

and, by the integral test,
∑∞

n=1
1

(n+1) log(n+1)
diverges so that

∑∞
n=1Mn

also diverges.

4. Problem 4

This is uniformly convergent everywhere on [0,∞). To see this, note

that

x

n+ n3x3
6

1

21/3 · n2/3

1

n+ n/2
=

22/3

3

1

n5/3

In which case
∞∑
n=1

x

n+ n3x3
6

∞∑
n=1

22/3

3

1

n5/3
<∞

So that by the Weierstrass M -test, this series converges uniformly ev-

erywhere.

5. Problem 5

Assume |f(z)| 6 M . By holomorphicity, we have a power series

expansion

f(z) =
∑
n>0

anz
n

where

an =
1

2πi

ˆ
Br(0)

f(z)

zn+1
dz
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Consider now for n > 1,

|an| 6
1

2π

ˆ
Br(0)

|f(z)|
|z|n+1

dz

=
1

2πrn+1

ˆ
Br(0)

|f(z)|dz

6
1

2πrn+1
·M · 2πr

=
M

rn

As f is entire, we may take r →∞ to find that |an| = 0 for all n > 1;

that is, f ≡ a0, so that f is constant.

6. Problem 6

Define gn := infk>n fn, where fn is our sequence of functions. Obvi-

ously gn 6 fn, so that ˆ
E

gn 6
ˆ
E

fn

Since this in fact holds for all n, we have the stronger inequality:ˆ
E

gn 6 inf
k>n

ˆ
E

fk

Note that gn is an increasing sequence of functions. By Lebesgue’s

monotone convergence theorem,

lim
n→∞

ˆ
E

gn =

ˆ
E

lim
n→∞

gn

Taking the limit in our inequality then yields:ˆ
E

lim inf
n→∞

fn 6 lim inf
n→∞

ˆ
E

fn

And Fatou’s Lemma is proved.

7. Problem 7

Suppose

lim
k→∞

ˆ
Ek

fdµ =

ˆ 1

0

fdµ
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Then, fχEk
6 f > 0, so by Lebesgue’s dominated convergence theo-

rem:

|int10f
(

lim
k→∞

χEk
− 1
)
edx = 0

As f > 0, Hölder’s inequality gives that

ˆ 1

0

(
lim
k→∞

χEk
− 1
)
dx = 0

So that limk→∞m(Ek) = 1.

8. Problem 8

Note that fnχE 6 supn fnχE 6 supn fn ∈ L1(R), where supn fn ∈

L1(R) by assumption. By Lebesgue’s dominated convergence theorem,

ˆ
E

fndµ =

ˆ
fnχEdµ→

ˆ
fχEdµ =

ˆ
E

fdµ

as desired.

9. Problem 9

Replacing f and g by f/||f ||p and g/||g||q respectively, we may as-

sume by homogeneity that ||f ||p = ||g||q = 1 (note that if either norm

vanishes the result is trivial).

By Young’s inequality,

||fg||1 =

ˆ
E

|fg|dµ

6
ˆ
E

|f |p

p
+
|g|q

q
dµ

=
||f ||pp
p

+
||g||qq
q

=
1

p
+

1

q
= 1
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10. Problem 10

Note that ˆ 1

0

|f(x+ h)− f(x)|pdx 6 2p||f ||pp <∞

So by the dominated convergence theorem, we may interchange the

order of the limit and integration.

Let ε > 0. By absolute continuity of integration, there exists δ such

that for all µ(A) < δ,ˆ
A

|f(x+ h)− f(x)|pdx < ε

By Lusin’s theorem, we can find a closed set F with µ(F ) < δ such

that f is continuous on F c. Then,

lim
h→0

ˆ 1

0

|f(x+ h)− f(x)|pdx = lim
h→0

(ˆ
F

|f(x+ h)− f(x)|pdx

+

ˆ
F c

|f(x+ h)− f(x)|pdx
)

< ε+ lim
h→0

ˆ
F c

|f(x+ h)− f(x)|pdx

= ε+

ˆ 1

0

| lim
h→0

f(x+ h)− f(x)|pdx

= ε

As ε is arbitrary, the result follows.


