
AUGUST 2010 ANALYSIS QUALIFYING EXAM

KELLER VANDEBOGERT

1. Problem 1

(a). Note that x 7→ d(x,E) is a continuous function so that On =

f−1(0, 1/n) is open by definition of continuity.

(b). Suppose that x ∈ On for all n ∈ N. Then, d(x,E) < 1/n for all n,

so that as n→∞, d(x,E) = 0 so that x ∈ E. As E is closed, x ∈ E.

This then implies that E =
⋂∞
n=1On. As E is compact, E is bounded

by Heine-Borel, so that m(On) <∞ for n sufficiently large. Whence

m(
∞⋂
n=1

On) = lim
n→∞

m(On)

As desired.

(c). Let E = R viewed as a subset of R2. This is closed and unbounded,

yet has measure 0. However, m(On) =∞ for all n. Similarly, enumer-

ate Q ∩ [0, 1] as {q1, q2, . . . } and set

E :=
∞⋃
n=1

Bε/2n+1(qn)

Obviously µ(E) <
∑∞

n=1
ε
2n

= ε, but by density of Q, m(On) > 1 for

all n.
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2. Problem 2

(a). Recall that for A closed and K compact, A + K is closed. Now,

B can be written as the countable union of compact sets

B =
∞⋃
n=1

Kn, Kn compact

then,

A+B =
∞⋃
n=1

(A+Kn)

is the countable union of closed (hence measurable) sets, so that A+B

is measurable.

(b). Set A = Z, B =
√

2Z. Then, Z +
√

2Z is dense in R, so that it is

certainly not closed.

3. Problem 3

(a). Note that for u = nx,ˆ
R
fn(x)dx =

ˆ
R

f(nx)

n
dx

=
1

n2

ˆ
R
f(u)du

=
1

n2
||f ||1

So that each fn ∈ L1(R).

(b). For N ∈ N, consider:∣∣∣ ˆ
R

N∑
n=1

fn(x)dx
∣∣∣ 6 N∑

n=1

ˆ
R
|fn(x)|dx

= ||f ||1 ·
N∑
n=1

1

n2

Letting N →∞, we see
∞∑
n=1

||fn||1 6 ||f ||1 ·
π2
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Since this sum in convergent, we deduce ||fn||1 → 0, that is, fn → 0

a.e.

4. Problem 4

” =⇒ ” Suppose first that F (x) =
´ x
−∞ f(t)dt. Obviously F is abso-

lutely continuous by absolute continuity of integration. Similarly, let

us compute:

TV M
−M(F ) = sup

P partition

∑
P

|F (xk)− F (xk−1)|

sup
P partition

∑
P

∣∣∣ˆ xk

xk−1

f(x)dx
∣∣∣

6 sup
P

ˆ M

−M
|f(x)|dx

6 ||f ||1 <∞

Finally, it is clear that limx→−∞ F (x) = 0, since limx→−∞
´ x
−∞ |f(t)|dt =

0.

”⇐= ” By absolute continuity, we have that F (x)−F (y) =
´ x
y
F ′(t)dt.

Letting y → −∞, we know that F (y)→ 0, whence

F (x) =

ˆ x

−∞
F ′(t)dt

Recall that the total variation can be easily computed as

TV M
−M(F ) =

ˆ M

−M
|F ′(t)|dt

Taking the supremum over all M , we see that
´∞
−∞ |F

′(t)|dt < ∞ (by

assumption), whence F ′ ∈ L1(R), which completes the proof.
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5. Problem 5

This is simply a computation using Fubini-Tonelli. Set At := {x |

|f(x)| > t}:

ˆ
E

|f |pdx =

ˆ
E

ˆ |f |
0

ptp−1dtdx

=

ˆ
E

ˆ ∞
0

ptp−1χAtdtdx

= p

ˆ ∞
0

tp−1
ˆ
E

χAtdxdt (Fubini-Tonelli)

= p

ˆ ∞
0

tp−1m
(
{x ∈ E | |f(x)| > t}

)
dt

As desired.

6. Problem 6

We start where the previous problem left off. We have:

ˆ
E

|f |pdx = p

ˆ ∞
0

tp−1m
(
{x ∈ E | |f(x)| > t}

)
dt

6 p

ˆ ∞
0

tp−2
ˆ
E

|g| · χ{x||f(x)|>t}dxdt

= p

ˆ
E

|g|
ˆ |f |
0

tp−2dtdx (Fubini-Tonelli)

=
p

p− 1

ˆ
E

|g| · |f |p−1dx

6
p

p− 1

( ˆ
E

|g|pdx
)1/p(ˆ

E

|f |pdx
)1−1/p

(Hölder’s)

=⇒
(ˆ

E

|f |pdx
)1/p

6
p

p− 1

(ˆ
E

|g|pdx
)1/p

As contended.
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7. Problem 7

Note first that since cos(x)
(1+x2)2

is an even function,ˆ
0∞

cos(x)

(1 + x2)2
dx =

1

2

ˆ ∞
−∞

cos(x)

(1 + x2)2
dx

Then, we shall compute the latter integral by finding the real part of

the integral ˆ ∞
−∞

eix

(1 + x2)2
dx

Consider the standard upper half semicircle contour of radius R, which

will be denoted by C. We have a single pole of order 2 at z = i

contained within this contour. Then, we can compute the residue at

this point:

Res
( eiz

(1 + z2)2
, i
)

= lim
z→i

d

dz

eiz

(z + i)2

= lim
z→i

ieiz

(z + i)2
− 2eiz

(z + i)3

= −i
( 1

2e

)
So that by the Residue theorem,ˆ

C

eiz

(1 + z2)2
dz =

π

e

Now, split the contour into two parts; C1 will denote the section of the

contour on the real line and C2 will denote the arc in the upper half

plane. Now, on the upper half plane,
∣∣eiz∣∣ 6 1, so that as R→∞,∣∣∣ˆ

C2

eiz

(1 + z2)2
dz
∣∣∣ 6 πR

(1 +R2)2
→ 0

And we are left with ˆ ∞
−∞

eix

(1 + x2)2
dz =

π

e

And, taking real parts and dividing by 2, we findˆ
0∞

cos(x)

(1 + x2)2
dx =

π

2e



6 KELLER VANDEBOGERT

8. Problem 8

Assume f has no zeroes. Then, by maximum modulus principle,

|f(z)| 6 max
z∈∂G
|f(z)| = c

If c = 0, then f ≡ 0 and the result is trivial, so assume c > 0. If

f has no zeroes, then 1/f is also holomorphic in G so that another

application of maximum modulus gives∣∣∣ 1

f(z)

∣∣∣ 6 max
z∈∂G

∣∣∣ 1

f(z)

∣∣∣ =
1

c

Whence |f(z)| > c. But then c 6 |f(z)| 6 c everywhere in G, in which

case we deduce that f is identically constant. Now, if f does have

zeroes, then f is not necessarily constant; consider f(z) := z on the

unit disk.

9. Problem 9

(a). False. Let f(x) = ex. Then,

f(x+ 1/n)− f(x) = ex(e1/n − 1)

Since e1/n − 1 > 0, we may choose x very large to make the above

difference arbitrarily large.

(b). False. By Cauchy-Hadamard, this implies that the radius of con-

vergence is 1/2. However, if f is holomorphic in the unit disk, the

radius of convergence is obviously at least 1.

(c). False. Choose any nonmeasurable subset E of [0, 1] and set

f(x) :=

{
1, x ∈ E
−1, x /∈ E

Obviously f is not measurable, however, |f | is simply the constant

function 1, which is clearly measurable.
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(d). True. Every measurable set may be approximated from below by

closed sets. By σ-finiteness, we may further arrange that these sets are

bounded, hence compact by Heine-Borel.

(e). True. Recall that for F differentiable a.e, we always have that´ b
a
F ′(x)dx 6 F (b)− F (a). Then,

1 6 F ′(x)

=⇒
ˆ x

0

dx 6
ˆ x

0

F ′(t)dt

=⇒ x 6
ˆ x

0

F ′(t)dt 6 F (x)− F (0)

=⇒ x 6 F (x)− F (0)

Since F (0) = 0, x 6 F (x) for all x ∈ [0, 1].


