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Abstract. In many infinite series, π seems to have a mysteri-
ous relation with the solutions of these infinite series. In the past,
many ad hoc methods such as Euler’s solution to the Basel Prob-
lem were employed, but the elegant theory of Fourier Series gives a
more rigorous foundation to these solutions and helps explain how
π seems to always pop up. We will introduce the trigonometric
Fourier Series and use it and Parseval’s identity to solve the Basel
Problem. Then, we will present as motivation the original method
of solution for the 1-dimensional Heat Equation and how the study
of Fourier series naturally arises in the solution of partial differen-
tial equations, spawning a discussion of separable Hilbert Spaces.
An abstract form of the generalized Fourier series by means of
eigenvector expansion is then stated and proved, from which the
trigonometric Fourier series is deduced as a simple corollary.

1. Introduction

Convergence of infinite series has always been an interesting area of

study. There are very standard, rather low level methods for showing

that a series converges. Often, convergence is all that is asked for, and

the actual limiting value is not considered important. For example,

consider
∞∑
n=1

1

n2

It is a very simple task to show that this series does in fact con-

verge. However, what does it converge to? This question is signifi-

cantly harder, and the solution of this particular series is known as
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the Basel Problem. Indeed, some of the greatest minds of mathemat-

ics have devoted significant effort to solving these problems. Newton,

Euler, Machin, and even Riemann are some of the most notable ex-

amples. Their methods ranged from extremely clever geometric ar-

guments, Taylor series expansions, all the way to very sophisticated

techniques from Complex Analysis. In fact, the aptly named Riemann

Zeta Function has spawned a problem so deep that it is currently one

of the million dollar problems on the Clay Institute’s list. It is amaz-

ing that such a natural question has such far reaching and complex

connections to all of mathematics.

1.1. Expansions of π. Indeed, π seems to have a deep connection

with a multitude of infinite series. Here are just a few examples:

π

4
= 1− 1

3
+

1

5
− 1

7
+ ...

π

2
√

2
= 1 +

1

3
− 1

5
− 1

7
+ ...

π2

8
= 1 +

1

32
+

1

52
+

1

72
+ ...

π

2
= 1 +

1

3
+

1 ∗ 2

3 ∗ 5
+

1 ∗ 2 ∗ 3

3 ∗ 5 ∗ 7
+ ...

and, finally:

π2

6
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...

While these expansions are certainly interesting and elegant to look

at, how would one go about deriving them? This question will lead us

into the world of Fourier series as one possible method of explanation.
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2. The Trigonometric Fourier Series

The trigonometric Fourier series is often studied in an undergradu-

ate course on ordinary differential equations. We will present it here

without proof, so it can be used to solve the Basel Problem. Also, let

L2(a, b) denote the set of square integrable functions over the interval

(a, b).

Theorem 2.1. Let f ∈ L2(a, b). Then f can be written as an infinite

series of the following form:

f(x) =
a0
2

+
∞∑
n=1

an cos
(2nπx

b− a

)
+ bn sin

(2nπx

b− a

)
where

a0 =
2

b− a

∫ b

a

f(x)dx

an =
2

b− a

∫ b

a

f(x) cos
(2nπx

b− a

)
dx

bn =
2

b− a

∫ b

a

f(x) sin
(2nπx

b− a

)
dx

This representation is called the Fourier Series for f .

With this representation, we can derive the solution of the Basel

Problem, although we need one more small lemma.

Lemma 2.2 (Parseval’s Equality). If f ∈ L2(a, b) and

f =
a0
2

+
∞∑
n=1

an cos
(2nπx

b− a

)
+ bn sin

(2nπx

b− a

)
where the coefficients are defined as in Theorem 2.1, then

2

b− a

∫ b

a

f 2(x)dx =
a20
2

+
∞∑
n=1

a2n + b2n
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Both of the above formulas will be proved in a more abstract setting

later on. For now, we will solve the Basel Problem.

Theorem 2.3.

π2

6
=
∞∑
n=1

1

n2
= 1 +

1

4
+

1

9
+

1

16
+

1

25
+ ...

Proof. Consider f(x) = x on the symmetric interval (−π, π). It is clear

that f is bounded on this interval, and thus f ∈ L2(−π, π). We now

consider the Fourier series of f given by Theorem 2.1. We start by

computing our coefficients. This is where we can use the properties of

f to our advantage. Since f is an odd function on a symmetric interval,

we see that a0 vanishes. Since an odd function multiplied by an even

is also an odd function, we see that our coefficients an will also vanish.

Thus, we only need to consider bn.

bn =
2

2π

∫ π

−π
x sin

(2nπx

2π

)
dx

=
2

π

∫ π

0

x sin(nx)dx

This integral can be solved by parts. We have:

bn =
2

π

([−x
n

cos(nx)
]π
0

+
1

n

∫ π

0

cos(nx)dx
)

=
2

π

(−π
n

cos(nπ)
)

=
2(−1)n+1

n

Where we note on the last step that cos(nπ) = (−1)n. Thus, we

have that:
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(2.1) x =
∞∑
n=1

2(−1)n+1

n
sin(nx)

We now employ Parseval’s inequality to get to a more familiar form.

By Lemma 2.2:

2

2π

∫ π

−π
x2dx =

∞∑
n=1

(2(−1)n+1

n

)2
=

2π2

3
=
∞∑
n=1

4

n2

We now divide both sides by 4, and find:

(2.2)
π2

6
=
∞∑
n=1

1

n2

As desired.

�

Remark 2.4. From (2.1) we actually see that the right hand side of the

equality consists only of odd functions. This makes sense that we only

require odd functions to approximate an odd function.

Remark 2.5. (2.1) is interesting in itself. Consider if we were to plug

in the value x = π/2. Then, it is clear that for all even n, sin(nπ/2) =

0. Thus, let n = 2k + 1, an odd integer. Since n + 1 will be even,

(−1)n+1 = 1, and for n = 2k + 1, sin((2k + 1)π/2) = (−1)k. Using all

of this information and plugging into (2.1), we now find:

π

4
=
∞∑
k=0

(−1)k

2k + 1
= 1− 1

3
+

1

5
− 1

7
+ ...

And we see that the proof of Theorem 2.3 actually gives us two

different expansions for the price of 1.



6 KELLER VANDEBOGERT AND CHARLEY JOYNER

3. Application of Fourier Series: Solution of the 1-d

Heat Equation

As seen in the previous section, Fourier series are very elegant and

can provide some pretty interesting results. However, it should be

noted that Fourier series were not motivated solely by the solution

of miscellaneous infinite series. In fact, Fourier series were originally

motivated by a very physical problem: the modelling of heat flow.

Definition 3.1 (The Heat Equation). Let u(x, t) represent the tem-

perature in a long, thin rod oriented along the x-axis at position x and

time t. For simplicity, we impose several conditions. First, assume that

the rod is completely insulated, so that no heat can leave nor enter the

rod through its sides. Second, assume that the heat energy is neither

created nor destroyed. Then, u(x, t) satisfies:

(3.1)
∂u

∂t
= α2∂

2u

∂x2

We now derive the solution of the heat equation.

3.1. Solution of (3.1). Consider a rod of length l as given in defini-

tion 3.1. Let u(x, t) be defined as above, and suppose it satisfies the

following boundary conditions.

(3.2) u(0, t) = u(l, t) = 0

Now suppose as well that we have an initial condition given by:

(3.3) u(x, 0) = f(x)
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where f ∈ L2(0, l). We now are going to make a rather ideal as-

sumption that will be explained in a later remark. For now, we will

assume that u is separable, i.e. of the form

(3.4) u(x, t) = T (t)X(x)

With (3.1) and (3.4) we can now reduce this problem to a system of

ordinary differential equations as so:

(3.5) α2X ′′(x)T (t) = T ′(t)X(x) =⇒ X ′′(x)

X(x)
=

T ′(t)

α2T (t)
= −λ2

Note that in (3.5) we recognize the fact that since both sides are

dependent only on x and t, they must be equal to a constant. We

denote that constant by −λ2, where λ > 0. The reason we assume

this form has to do with the properties of our boundary conditions.

Namely, any nonnegative constant will only yield trivial solutions. We

proceed as so, and see that (3.5) has spawned two simple ODE’s:

X ′′(x) = −λ2X(x)

T ′(t) = −λ2α2T (t)

These can both be easily solved:

(3.6) X(x) = c1 sin(λx) + c2 cos(λx)

(3.7) T (t) = ae−λ
2α2t

where c1, c2, and a are arbitrary constants. We now impose (3.2)

onto (3.6) because the boundary conditions will have no effect on (3.7).
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X(0) = 0 = c2

X(l) = 0 =⇒ c1 sin(λl) = 0

We assume that c1 6= 0, else we would have a trivial solution. Then

we see:

(3.8) sin(λl) = 0 =⇒ λ =
kπ

l

where k ∈ Z+. We now observe an interesting phenomenon. Since k

is an arbitrary positive integer, we have an infinite amount of solutions.

This is is recognition that the heat equation is a linear homogeneous

partial differential equation (PDE). Letting L = α2∂2x − ∂t, L is an

operator, and uk be an infinite sequence of solutions to this PDE, so

L(uk) = 0. We then see:

L
( ∞∑
k=1

ckuk

)
=
∞∑
k=1

ckL(uk) = 0

where ck are arbitrary constants. We thus see that any linear com-

bination of these solutions is also a solution.

We then have:

(3.9) u(x, t) =
∞∑
k=1

ck sin
(kπx
l

)
e−α

2k2π2t/l

Where ck = ac1. It is here that the application of Fourier series

comes into play. If we did not have the theory of Fourier series at

hand, we would be at a dead end. However, we can now impose our
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initial condition given by (3.3).

u(x, 0) = f(x) =
∞∑
k=1

ck sin
(kπx
l

)
But this is precisely a Fourier series, where the coefficients for our

cosine term all vanish! Thus we can use Theorem 2.1. We set bn = ck,

and see:

(3.10) ck =
2

l

∫ l

0

f(x) sin
(kπx
l

)
dx

We now have a solution of the heat equation. Combining (3.9) and

(3.10), we have:

u(x, t) =
∞∑
k=1

2

l

[∫ l

0

f(x)sin
(kπx
l

)
dx

]
sin
(kπx
l

)
e−α

2k2π2t/l

Remark 3.2. The assumption (3.4) actually has a very rigorous founda-

tion. In general, we can make this assumption if the associated Hilbert

Space H is separable. Separability implies that there is a countable,

dense basis for H. This theory is beyond the scope of the paper, but

is very interesting in itself.

4. Hilbert Spaces and Generalized Fourier Series

We now present an extremely elementary discussion of the theory of

orthogonality and Hilbert Spaces.

Definition 4.1 (Hilbert Space). A Hilbert SpaceH is an inner product

space where every convergent Cauchy sequence converges to an element

in H (i.e a complete inner product space).

The reader is assumed familiar with the axioms of inner products and

conditions of orthogonality. We can now present some of the abstract
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theory behind generalized Fourier Series and deduce the trigonometric

case given by Theorem 2.1.

Theorem 4.2. For 1 ≤ p ≤ ∞, the space Lp is complete.

The proof for this is well beyond the scope of the paper, and employs

many advanced techniques from the theory of real analysis. We will,

however, use this theorem for a quick corollary.

Corollary. L2(a, b) endowed with the inner product
∫ b
a
f(x)g(x)dx

is a Hilbert space.

Proof. Since L2 is complete by theorem 4.2, it suffices to check that∫ b
a
f(x)g(x)dx satisfies the axioms of an inner product. Since we are

assuming f and g are real functions, we only consider the inner product

axioms for a real vector space. Symmetry and bilinearity are clear. For

positive semi-definiteness, let f ∈ L2(a, b). Then, as is easy to prove,∫ b
a
f 2(x)dx = 0 iff f(x) = 0 almost everywhere, since f 2(x) is clearly

nonnegative. �

For the next theorem, it is standard that a basis in the language of

Hilbert spaces is defined to be a maximal orthonormal set.

Definition 4.3. The set {φn} of vectors are called a maximal orthonor-

mal set if 〈φj, φk〉 = 0 when k 6= j, 〈φj, φj〉 = 1, and if ψ /∈ {φn} and

〈ψ, φj〉 = 0, then ψ = 0.

Theorem 4.4 (Generalized Fourier Series). Let H be a Hilbert space.

If {φk} is a basis for H, and f ∈ H, then:

(4.1) f =
n∑
i=1

〈f, φi〉φi
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where n is the dimension of H.

Proof. By means of Zorn’s Lemma, it is well known that every vector

space has a basis. By the Grahm-Schmidt process, every basis can

be made orthonormal. We thus assume that H has a basis as defined

by definition 4.3. Let f ∈ H. Then f ∈ Span{φk}, since this is an

independent set. Thus, by definition,

f =
n∑
i=1

ciφi

for some constants ci. Now take the inner product of both sides with

any φi. We have:

〈φi, f〉 = ci

and the result (4.1) follows. �

Corollary. Any function f ∈ L2(a, b) can be given as in Theorem

2.1.

Proof. It can be easily shown that{
cos
(2nπx

b− a

)}∞
n=1

and {
sin
(2nπx

b− a

)}∞
n=1

are a basis for L2(a, b) if you take the union of these two sets under the

inner product given by

〈f, g〉 =
2

b− a

∫ b

a

f(x)g(x)dx

Thus, we just use Theorem 4.4 and the result is obvious. �
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Theorem 4.5 (Parseval’s Equality). Let H be a Hilbert space and

f ∈ H. Then:

(4.2) 〈f, f〉 =
n∑
i=1

|〈f, φi〉|2

where n is the dimension of H.

Proof. The proof is obvious after taking the inner product of both sides

of (4.1) with themselves. �

Remark 4.6. As in the proof for theorem 2.1, we can define the exact

same inner product and the same basis and easily derive Lemma 2.2

5. Conclusion

We started with a very simple question and noticed an interesting

pattern. Namely, how π seems to pop up in the solution of numer-

ous infinite series. We then tried to explain this pattern by means of

the trigonometric Fourier series, and derived two very interesting and

rather nontrivial results. This then led us to examine how Fourier series

can be used in mathematical physics, and we were able to solve the 1-

dimensional heat equation. Finally, in order to see the abstract theory

working under the hood of the trigonometric Fourier series, we were

led to a more general discussion of some of the properties of Hilbert

spaces and maximal orthonormal sets.
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