

Test 3: Chapter 15

Complete the following problems to the best of your ability. **SHOW ALL OF YOUR WORK.** Unshown work will not be graded. You may not use a calculator.

1. For each of the following shapes, give an equation that describes it in the requested coordinate system.

(a) [6] The unit circle in the xy -plane in rectangular coordinates.

(b) [6] The circle of radius 2 in the zy -plane in rectangular coordinates.

(c) [6] The xy -plane in spherical coordinates.

(d) [6] The sphere of radius 2 in spherical coordinates.

(e) [10] The sphere of radius 3 in cylindrical coordinates.

(f) [10] The circle of radius 1 centered at the point $(0, 1)$ on the xy -plane in polar coordinates.

2. [15] Calculate $\iint_R \frac{\cos(x)}{x} dA$ over the triangle in the xy -plane with corners $(0, 0)$, $(1, 0)$ and $(1, 1)$.

3. [15] Convert $\int_{-1}^0 \int_0^{\sqrt{1-x^2}} e^{x^2+y^2} dy dx$ to an integral in polar coordinates, and evaluate it.

4. [15] Convert $\int_0^2 \int_{-\sqrt{4-y^2}}^{\sqrt{4-y^2}} \int_1^{4-x^2-y^2} dz dx dy$ into an integral in cylindrical coordinates. You do not need to evaluate the integral.

5. [15] Set up a triple integral to calculate the volume of the region above the half-cone $z = \sqrt{x^2 + y^2}$ and below the sphere $\rho = 3$. You don't need to actually evaluate it.