

Math 241 Homework 6: §14.1-14.5

1. Calculate the following limits, or prove that they don't exist.

(a) $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3y}{x^4 + y^4}$

(b) $\lim_{(x,y) \rightarrow (1,1)} \frac{x^2 - 2xy + y^2}{x - y}$

(c) $\lim_{(x,y) \rightarrow (0,0)} \frac{x}{\sqrt{x^2 + y^2}}$

2. Assume that the following limits exist (they do!). Find out what they must be.

(a) $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 - 3x^2 + x^2y - 3y^2}{x^2 + y^2}$

(b) $\lim_{(x,y) \rightarrow (0,0)} \frac{1 - (x^2 + y^2 - 1)^2}{4 - (x^2 + y^2 + 2)^2}$

(c) $\lim_{(x,y) \rightarrow (0,0)} \frac{x^3 + \sin(x^2 + y^2)}{x^2 + y^2}$

3. Calculate the partial derivatives f_x , f_y , and f_{xy} for the following functions.

(a) $f(x, y) = x^3y + y^2 + 2xy$

(b) $f(x, y) = ye^y + \sin(x + y)$

(c) $f(x, y) = x \ln(y) - \frac{x^2}{x+y}$

(d) $f(x, y) = 2^{xy} + x^2y^3$

4. Let $f(x, y) = x^2 + y^3$.

(a) Calculate $\nabla f(2, 1)$

(b) Calculate the directional derivative of $f(x, y)$ at $P = (1, 1)$ in the direction of $\mathbf{v} = \langle 1, -2 \rangle$.

(c) At the point $P = (-1, 2)$, in which direction is f increasing the most? What is the directional derivative in that direction?

5. Calculate the directional derivative of $f(x, y) = xe^y + y^2$ at the point $(-1, 0)$ in the direction of the vector $\mathbf{v} = \langle 3, -4 \rangle$.

6. In which direction is the function $f(x, y) = y \sin(xy)$ decreasing the most at the point $(0, 1)$? What is the directional derivative in that direction?

7. Let $z = x^3y + y^2x - x$ where $x = e^{st}$ and $y = te^{st}$. Calculate $\partial z / \partial s$ in terms of s and t .