

Math 241 Homework 2: §12.3, some 12.4

1. For each of the following pairs of vectors, calculate the following
 - The dot product $\mathbf{u} \cdot \mathbf{v}$
 - The smallest angle between the two vectors (you may give your answer in terms of inverse trig functions)
 - The projection $\text{proj}_{\mathbf{v}} \mathbf{u}$
 - The cross product $\mathbf{u} \times \mathbf{v}$
 - (a) $\mathbf{u} = \langle 1, 4 \rangle$, $\mathbf{v} = \langle -2, 6 \rangle$
 - (b) $\mathbf{u} = \langle 2, -3 \rangle$, $\mathbf{v} = \langle 0, 2 \rangle$
 - (c) $\mathbf{u} = \langle 1/2, 1 \rangle$, $\mathbf{v} = \langle -3, 2 \rangle$
 - (d) $\mathbf{u} = \langle -1, 2, 4 \rangle$, $\mathbf{v} = \langle 3, -2, 1 \rangle$
 - (e) $\mathbf{u} = \langle 2, 2, 0 \rangle$, $\mathbf{v} = \langle -1, 4, -1 \rangle$
2. Give an example of two orthogonal vectors. What makes them orthogonal?
3. Give an example of two nonequal parallel vectors. What makes them parallel?
4. Let $A = (3, -3, -2)$, $B = (2, -1, 1)$ and $C = (4, 2, 2)$. What is the value of the angle $\angle ABC$?
5. Determine whether the following statements are true or false. If false, give the reason, or a counterexample.
 - (a) The dot product of two vectors is a vector.
 - (b) If θ is the smallest angle between \mathbf{u} and \mathbf{v} , then $\mathbf{u} \cdot \mathbf{v} = |\mathbf{u}||\mathbf{v}| \cos \theta$.
 - (c) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{u} \cdot \mathbf{w}$ and $\mathbf{u} \neq \mathbf{0}$, then $\mathbf{v} = \mathbf{w}$.
 - (d) If $\mathbf{u} \cdot \mathbf{v} = \mathbf{0}$ and $\mathbf{u} \neq \mathbf{0}$, then $\mathbf{v} = \mathbf{0}$.
6. Find $\mathbf{u} \cdot \mathbf{v}$ if $|\mathbf{u}| = 3$, $|\mathbf{v}| = 4$, and the angle between \mathbf{u} and \mathbf{v} is $2\pi/3$ radians.
7. Determine which of the following expressions make sense; if they don't, say why they don't make sense.
 - (a) $(\mathbf{u} \cdot \mathbf{v}) \times (\mathbf{a} \cdot \mathbf{b})$
 - (b) $(\mathbf{u} \times \mathbf{v}) \cdot (\mathbf{a} \times \mathbf{b})$
 - (c) $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$
 - (d) $\mathbf{u} \times (\mathbf{v} \cdot \mathbf{w})$
 - (e) $\mathbf{u} \times (\mathbf{v} \times \mathbf{w})$