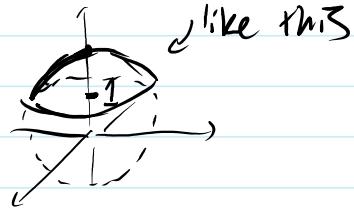


HW1 key

Monday, January 14, 2019 3:32 PM

1) a) the vertical line through $(4, 1, 0)$
 b) the sphere of radius $\sqrt{3}$ with center $(0, 0, 2)$
 c) the top slice of the sphere of radius 2 above $z=1$



2) a) $\sqrt{(0-2)^2 + (1-3)^2 + (0-4)^2} = \sqrt{4+4+16} = \sqrt{24} = 2\sqrt{6}$
 b) $\sqrt{(-2-1)^2 + (-1-1)^2 + (3-1)^2} = \sqrt{9+4+4} = \sqrt{17}$
 c) $\sqrt{0^2 + 0^2 + (2-4)^2} = 2$

3) $4x^2 + 4y^2 + 4z^2 - 4x + 8y + 16z - 13 = 0$

$$4(x^2 - x) + 4(y^2 + 2y) + 4(z^2 + 4z) = 13$$

$$(x^2 - x + \frac{1}{4} - \frac{1}{4}) + (y^2 + 2y + 1 - 1) + (z^2 + 4z + 4 - 4) = \frac{13}{4}$$

$$(x - \frac{1}{2})^2 - \frac{1}{4} + (y + 1)^2 - 1 + (z + 2)^2 - 4 = \frac{13}{4}$$

$$(x - \frac{1}{2})^2 + (y + 1)^2 + (z + 2)^2 = \frac{13}{4} + \frac{1}{4} + 1 + 4 = \frac{34}{4} = \frac{17}{2}$$

radius $\sqrt{\frac{17}{2}}$

center $(\frac{1}{2}, -1, -2)$

4) $x^2 + y^2 + z^2 - 4x + 2y - 4z + 9 = 0$

$$(x^2 - 4x) + (y^2 + 2y) + (z^2 - 4z) = -9$$

$$(x^2 - 4x + 4 - 4) + (y^2 + 2y + 1 - 1) + (z^2 - 4z + 4 - 4) = -9$$

$$(x - 2)^2 - 4 + (y + 1)^2 - 1 + (z - 2)^2 - 4 = -9$$

$$(x - 2)^2 + (y + 1)^2 + (z - 2)^2 = -9 + 4 + 1 + 4 = 0$$

radius of 0 means this
 isn't a sphere, but the point
 $(2, -1, 2)$.

5) $0 \leq x \leq 6, 0 \leq y \leq 6, 0 \leq z \leq 6$

6) distance from $(3, 4, 5)$ to $(3, 0, 0)$ is $\sqrt{0^2 + 4^2 + 5^2} = \sqrt{41}$

7) distance from $(2, -1, 1)$ to $(0, -1, 0)$ is $\sqrt{2^2 + 1^2} = \sqrt{5}$

8) a) $\vec{PQ} = \langle 4-1, 5-2, 6-3 \rangle = \langle 3, 3, 3 \rangle, |\vec{PQ}| = \sqrt{9+9+9} = \sqrt{27} = 3\sqrt{3}$

b) $\vec{PQ} = \langle 2-0, 1-1, 0-1 \rangle = \langle 2, 0, -1 \rangle, |\vec{PQ}| = \sqrt{4+0+1} = \sqrt{5}$

c) $\vec{PQ} = \langle 1-1, 0-0, 2-3 \rangle = \langle 2, 0, -1 \rangle, |\vec{PQ}| = \sqrt{5}$ again.

9) b & c are equal

10) any scalar multiple of $\langle -2, 2, -5 \rangle$

11) $\vec{v} = k \langle -8, 1, 4 \rangle$ will work when k is positive. We need $|\vec{v}| = 3$, so we must have

$$3 = \sqrt{(-8k)^2 + (1k)^2 + (4k)^2}$$

$$9 = 64k^2 + k^2 + 16k^2$$

$$9 = 81k^2$$

$$\frac{1}{9} = k^2$$

we want the positive k ; so, $k = \frac{1}{3}$ and the desired vector is

$$\vec{v} = \left\langle \frac{-8}{3}, \frac{1}{3}, \frac{4}{3} \right\rangle$$

12) $\vec{v} = \langle 2, -1, 3 \rangle$. $|\vec{v}| = \sqrt{4+1+9} = \sqrt{14}$, so the unit vector is $\vec{u} = \left\langle \frac{2}{\sqrt{14}}, \frac{-1}{\sqrt{14}}, \frac{3}{\sqrt{14}} \right\rangle$

13) $\vec{u} = \langle 2, 3 \rangle$ $\vec{v} = \langle -1, 2 \rangle$

a) $\vec{u} + \vec{v} = \langle 2-1, 3+2 \rangle = \langle 1, 5 \rangle$

b) $3\vec{u} = \langle 6, 9 \rangle$

c) $2\vec{u} - 3\vec{v} = \langle 4, 6 \rangle + \langle 3, -6 \rangle = \langle 7, 0 \rangle$

14) $P = (-1, 2, -3)$. $Q = (1, 3, 5)$. So, midpoint is $\left(\frac{1+(-1)}{2}, \frac{2+3}{2}, \frac{-3+5}{2} \right) = \left(0, \frac{5}{2}, 1 \right)$