

Math 241 Homework 11: Ch. 16

1. Calculate the following line integrals over the given curves.

- (a) $\int_C xy^2 ds$ where C is the line segment joining $(0, 0)$ and $(1, 2)$.
- (b) $\int_C \sqrt{xy} ds$ where C is the line segment joining $(0, 2)$ and $(1, -1)$.
- (c) $\int_C \sqrt{x^2 + y^2} ds$ where C is the top half of the circle of radius 2 centered at the origin.
- (d) $\int_C \sqrt{xy + y + z} ds$ where C is the line segment joining $(0, 0, 1)$ and $(1, 1, -2)$.
- (e) $\int_C (x^2 \cos(y) + y) dx + (x^2 \cos(y) - y) dy$ where C is the line segment from $(1, 0)$ to $(0, 1)$.
- (f) $\int_C (x - 2y) dx + (2x + y) dy$ where C is the top half of the unit circle.

2. Use Greene's Theorem to evaluate the following line integrals.

- (a) $\oint_C (y^2 + x^3 - 2x) dx + (2xy + x^2 - 3 \cos(y^2 + 1)) dy$ where C is the triangle with corners $(0, 0)$, $(2, 2)$ and $(0, 1)$, oriented anti-clockwise.
- (b) $\oint_C (y + \sin(x)) dx + (3x - y^3 \cos(y)) dy$, where C is the anti-clockwise curve consisting of the line segment from $(0, 0)$ to $(2, 2)$, the portion of the circle $x^2 + y^2 = 8$ from $(2, 2)$ to $(-2, -2)$, and the line segment from $(-2, -2)$ to $(0, 0)$.
- (c) $\oint_C (\cos(x) + \sin(y) - xy^3) dx + (x \cos(y) - x^2 y^2 + e^{y^2+1}) dy$, where C is the anti-clockwise oriented rectangle with vertices $(0, 0)$, $(1, 0)$, $(1, 3)$ and $(0, 3)$.

Extra Problems:

§16.1: 1-32, §16.2: 13-18, §16.4: 21-32