

Math 241 Homework 10: §15.7 cont'd

1. Convert the following spherical points into rectangular and cylindrical coordinates.
 - (a) $(\rho, \phi, \theta) = (6, \pi/6, \pi/6)$
 - (b) $(\rho, \phi, \theta) = (4, \pi/6, 7\pi/6)$
 - (c) $(\rho, \phi, \theta) = (4, \pi/6, \pi/2)$
2. Set up triple integrals to find the volume of the following regions.
 - (a) The solid bounded above by the sphere $\rho = 3$ and below by the cone $\phi = \pi/6$.
 - (b) The solid within the sphere $x^2 + y^2 + z^2 = 4$, above the xy -plane, and below the cone $z = \sqrt{x^2 + y^2}$.
 - (c) The solid inside the cone $z = \sqrt{(x^2 + y^2)/3}$, and between the spheres $x^2 + y^2 + z^2 = 4$ and $x^2 + y^2 + z^2 = 9$.
3. Rewrite the following integrals in spherical coordinates.
 - (a) $\int_{-1}^1 \int_0^{\sqrt{1-x^2}} \int_0^{\sqrt{1-x^2-y^2}} z(x^2 + y^2 + z^2)^{3/2} dz dy dx$
 - (b) $\int_0^3 \int_0^{\sqrt{9-x^2}} \int_{-\sqrt{9-x^2-y^2}}^{\sqrt{9-x^2-y^2}} x^2 dz dy dx$

Optional Problems §15.7 21-62