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Abstract

Let V be a congruence modular variety generated by a finite nilpotent algebra A. If A is a product
of algebras of prime power order, then the class Vsi of subdirectly irreducible members of V can be
axiomatised by a finite set of elementary sentences.

1. Introduction

We define an algebra as a nonempty set endowed with some collection of finitary
operations. A variety is a class of algebras that is closed with respect to the formation
of homomorphic images, subalgebras, and direct products (all of which are defined in
the natural way using the basic operations of the algebras). By a 1935 result of Garrett
Birkhoff [3], a variety is also precisely the class of algebras axiomatised by a certain set
of elementary sentences. The smallest variety containing a given algebra A is denoted
V(A), and referred to as the variety generated by A.

Groups, rings, vector spaces, Boolean algebras, and lattices are all well-known ex-
amples of algebras. The correspondence between the algebraic notions of homomorphic
images, subalgebras and direct products and the logical notion of axiomatisability has
afforded a different perspective on these algebras that can be used to discover common-
alities between these separate kinds of objects.

In group theory and ring theory, much of the structural information of the object of
interest comes from the study of special subalgebras: normal subgroups in group theory
and two-sided ideals in ring theory. Due to the lack of guaranteed identity elements in
general algebras, such special subalgebras often fail to exist. But the identification of
normal subgroups and ideals as kernels of homomorphisms can be extended to algebras.
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If h : A → B is a homomorphism between algebras with the same basic operations
(that is, a map that preserves all of those operations), we define the relational kernel
of h to be the subalgebra of A2 given by {〈a, b〉 |h(a) = h(b)}. This kernel is a special
type of equivalence relation called a congruence relation. The congruence relations on
an algebra A are also precisely the equivalence relations on A that are subalgebras of
A2. The congruences of a given algebra A form a complete lattice under set inclusion,
denoted Con(A). Given two congruences α and β in this lattice, the greatest lower
bound or meet of two congruences (which is just their intersection) is denoted by α∧ β.
Their least upper bound or join (the congruence generated by their union) is denoted
α ∨ β. A congruence on A is called principal if it the smallest congruence containing a
given pair 〈a, b〉, in which case it is denoted CgA(a, b).

An algebra A is called subdirectly irreducible if it has a smallest nontrivial congruence
called its monolith. This monolith is principal, as it cannot properly contain any other
nontrivial congruences. Any nontrivial pair belonging to the monolith is what we call a
critical pair : that is, a pair 〈c, d〉 so that for any nontrivial congruence α on A, we have
〈c, d〉 ∈ α. Given a variety V, we write Vsi to denote the class of subdirectly irreducible
members of V. In 1944, Birkhoff also proved in [4] that two varieties are equal if and
only if they share the same subdirectly irreducible members, so the study of Vsi can
grant insight into V itself.

If an algebra or class of algebras is axiomatisable by finitely many equations, we
say that it is finitely based. Subdirect irreducibility isn’t preserved by direct products,
so Vsi isn’t a variety and therefore cannot be axiomatised by equations. But it might
still be axiomatisable by more broad sentences of first-order logic. If an algebra or
class of algebras can be axiomatised by elementary sentences (which are built up from
equations with the help of logical connectives and quantifiers), we say that it is finitely
axiomatisable. The main result of this paper shows that this can happen if the algebra
A that generates the variety V satisfies a few particular hypotheses. Included in these
hypotheses is nilpotence, which can be seen as a generalised abelianness, and which we
will define below.

Theorem 1.1. Let A be a finite nilpotent algebra that is a product of algebras of
prime power order such that V = V(A) is a congruence modular variety. Then, Vsi is
finitely axiomatisable.

In 1996, Ralph McKenzie in [13] solved Tarski’s Finite Basis Problem by proving
that there is no algorithm to determine whether a given finite algebra is finitely based.
However, much progress has been made in classifying what kinds of algebras and varieties
are finitely based or finitely axiomatisable.

In 1964, Oates and Powell proved that any finite group is finitely based [14]. Kruse
and L’vov independently extended that result to finite rings in 1973 [7], [8]. In 1970,
McKenzie proved in [11] that any finite lattice with finitely many additional basic op-
erations is finitely based. A generalisation of this comes in the form of Baker’s Finite
Basis Theorem [1], which states that if A is a fintie algebra with only finitely many
basic operations and V(A) is congruence distributive, then A is finitely based. Baker’s
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theorem was reproved a number of times by different researchers and inspired much of
the investigation into finite basis problems.

Congruence distributivity is one of several algebraic qualities of the congruence lattice
of algebras in a variety. We say that V is congruence distributive if for any A ∈ V, we
have that any congruences α, β, γ ∈ Con(A) satisfy the equation

α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)

or its equivalent dual. Congruence distributivity is less frequently encountered in the
study of the classical types of algebras. Groups, rings, vector spaces, and other types of
19th-century algebras often fail to be congruence distributive. They do, however, satisfy
a weakening of the distributive law that was discovered by Dedekind in the late 19th
century, which he called the modular law, and is as follows:

α ∧ β = β ⇒ α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)

A variety V is called congruence modular if any congruences α, β, γ on any algebra
A ∈ V satisfy this law. Modularity enables a well-behaved extention of the commutator
on groups that can be used to define Abelianness, solvability, and nilpotence. Using these
notions, Freese and Vaughan-Lee showed that congruence modular varieties generated
by certain finite nilpotent algebras are finitely based. This result is stated as Theorem
2.3 in section 2, after we define nilpotence.

A few finite basis results are contingent upon the variety having a finite residual
bound: that is, a finite upper bound on the cardinalities of the algebras in Vsi. In 1974,
Bjarni Jónsson speculated that any variety with a finite residual bound that is gener-
ated by a finite algebra with finitely many basic operations is finitely based. Jónsson’s
speculation is still open in its generality, and was the inspiration for many finite basis
results from the last several decades. For instance, McKenzie proved in [12] that if A is
a finite algebra with finitely many basic operations so that V(A) is congruence modular
and has a finite residual bound, then A is finitely based.

Willard proved a similar result in [15], where he showed that if A is a finite algebra
with finitely many basic operations so that V(A) is congruence meet-semidistributive
and has a finite residual bound, then A is finitely based. Meet-semidistributivity is yet
another weakening of the distributive law:

α ∧ β = α ∧ γ ⇒ α ∧ (β ∨ γ) = (α ∧ β) ∨ (α ∧ γ)

Many algebraic properties of varieties depend upon the presence of certain terms
(which are built of compositions of the basic operations of the variety) that satisfy
certain equations. For example, a ternary term p(x, y, z) is called a difference term if
it satisfies the identity p(x, x, y) ≈ y and if p(a, b, b) = a whenever 〈a, b〉 belongs to an
abelian congruence of an algebra in the variety. Kearnes, Szendrei and Willard proved in
[6] that if V is a variety with finitely many basic operations and a finite residual bound,
then V is finitely based.

The condition of V having a finite residual bound is quite restrictive to the subdirectly
irreducible algebras in V. It implies that there are only finitely many algebras in Vsi, up
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to isomorphism. In this way, each of the finite basis results that include a finite residual
bound as a hypothesis carry with them a sort of automatic finite axiomatisability of Vsi.
The result of this paper indicates that such an axiomatisability also happens in the case
of certain nilpotent varieties. This result is somewhat orthogonal to McKenzie’s in [12],
since nilpotent varieties with finite residual bounds only contain abelian algebras.

In 2000, McNulty and Wang circulated a preprint of an ultimately incorrect proof
that for any finite group G and V = V(G), Vsi is finitely axiomatisable. The proof
has not yet been repaired, but the author has made it partway to McNulty and Wang’s
conjecture by proving in an unpublished paper that if G is a finite nilpotent group
and V = V(G), then Vsi is finitely axiomatisable. Nilpotence can be thought of as a
measure of how close to being abelian a group is. It is this result that inspired the
current paper, which goes partway to extending the result about nilpotent groups up to
nilpotent algebras.

2. Preliminaries

2.1. Nilpotence We will begin by generalising the group theoretic notions of Abelian-
ness and nilpotence to general algebras. Most of the theory in this paper comes from
Freese and McKenzie’s excellent book on commutator theory in general algebras [5].
Abelianness and nilpotence, both in groups and in algebras, can be defined by use of
the commutator operation, or using the notion of a center. We will use the latter, as it
is all we will need in the proof, but readers curious about the commutator perspective
on things will find enrichment in this book. We will assume, from this point onwards,
that any varieties are congruence modular, any algebras generate congruence modular
varieties.

A group G is Abelian if all of its elements commute. This property is powerful but
rare; in general we can find an Abelian normal subgroup of any given group by taking
its center. Given a group G, the center of G is defined

Z(G) = {x ∈ G | gx = xg for any g ∈ G}

We can then use the center to define the upper central series of G; this is a series

{1} = Z0 / Z1 / Z2 / . . .

of normal subgroups of G so that Zi+1/Zi = Z(G/Zi) for each i. If the upper central
series terminates, that is, there is some k for which Zk = G, we say that G is nilpotent
of class k. Since Z1 is just Z(G), we see that G is Abelian if and only if it is nilpotent
of class 1. Lyndon proved in 1952 [9] that the variety generated by any nilpotent group
is finitely based.

In general algebras, defining the center becomes a bit trickier. Since the basic op-
erations of an algebra can be much more complicated than the binary multiplication
of groups, we have to adjust our definition of Abelianness. We first define Abelian
congruences.
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Suppose α is a congruence of an algebra A. Then, α is Abelian if for any term t(ū, v̄)
and any tuples ā1, ā2 of the same length as ū and b̄1, b̄2 of the same length of v̄ so that
〈a1i , a2i〉 ∈ α for each i and 〈b1j , b2j 〉 ∈ α for each j, we have that t(ā1, b̄1) = t(ā1, b̄2)→
t(ā2, b̄1) = t(ā2, b̄2). That is, the following diagram holds:

t(ā1, b̄1) t(ā1, b̄2)

t(ā2, b̄1) t(ā2, b̄2)

α

α

=

α

α

=

Each algebra A has at least one abelian congruence called the center. The center is
the binary relation ζA on A defined by

〈x, y〉 ∈ ζA ⇔ (∀t)(∀ū, v̄)(t(ū, x) = t(v̄, x)↔ t(ū, y) = t(v̄, y))

where the first quantifier is over all term operations on A and the second over all n-tuples
from A, depending on the arity of t. It follows from the definitions that ζA is an abelian
congruence on A. An algebra A is called Abelian if ζA = 1A.

Equipped as we are now with the definition of a center, the above definition of a
group’s upper central series generalises nicely. We define the upper central series of an
algebra A to be the series of congruences

0A = ζ0 ≤ ζ1 ≤ ζ2 ≤ . . .

so that ζi+1/ζi = ζ(A/ζi) for each i, where ζi+1/ζi refers to the image of the congruence
ζi+1 under the quotient map that forms ζi. If this upper central series terminates so that
ζk = 1A for some k, we say that A is nilpotent of class k. This definition generalises the
definition for nilpotence in groups. We will call a variety V nilpotent of class k if all of
the algebras belonging to V are nilpotent of class k.

2.2. Congruence Permutability Groups carry the useful property that if H and K
are normal subgroups of G, their products commute; that is, HK = KH. This property
generalises to congruences of algebras. If α and β are congruences on an algebra A, we
define their composition as

α ◦ β = {〈a, b〉 | ∃c ∈ A so that 〈a, c〉 ∈ α and 〈c, b〉 ∈ β}

An algebra A is called congruence permutable if, for any two congruences α and β of
A, we have α ◦ β = β ◦ α. Groups are an example of congruence permutable algebras.
We call a variety V congruence permutable if every algebra contained in V is congruence
permutable.

In [10], Anatoli Mal’tsev proved that a variety V is congruence permutable if and
only if it has a ternary term m(x, y, z) so that

m(x, y, y) = x = m(y, y, x)
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We call such a term a Mal’tsev term. For example, any variety of groups has the Mal’tsev
term m(x, y, z) = xy−1z. Freese and McKenzie in [5] prove a number of results relating
nilpotence and congruence permutability. We collapse the information that we need in
this paper into one theorem for convenience of presentation.

Theorem 2.1. If A is a nilpotent algebra and V = V(A) is a congruence modular
variety, then the following are true:

1. V is congruence permutable and has Mal’tsev term m(x, y, z).

2. If A ∈ V and a, b, c ∈ A, then CgA(a, b) = CgA(m(a, b, c), c)

3. (c, d) ∈ CgA(a, b) iff there exists a unary polynomial p(x) so that {p(a), p(b)} =
{c, d}.

We will also make use of the finite basis result of Freese and McKenzie. Given any
variety V and a set X of variables, we define the free algebra FV(X) to be a set of
representatives of terms of V in the variables in X under the equivalence relation defined
by the equations true in V. If V is generated by a finite algebra, it is locally finite,
meaning that all its finitely generated algebras are finite; FV(X) in particular for any
finite X.

Now, suppose V is a nilpotent congruence modular variety, as in Theorem 2.1. Con-
sider F = FV(X ∪ z) for some set X of variables. Define u + v = m(u, z, v) where m
is the Mal’tsev term in V. This addition generates a group structure on F . For x ∈ X
define δx ∈ End(F) as the map where δx(x) = z, δx(z) = z, and δ(y) = y for any
y ∈ X − {x}. In other words, δx fixes every element of X ∪ z except for x itself, which
it maps to z. Then, given a term w(x1, . . . , xn, z) ∈ F , we say that w is a commutator
word if w ◦ δx = z for any x ∈ X. That is to say, if any of x1, . . . , xn are replaced with
z, w(x̄, z) = z. Commutator words provide a sort of decomposition for general terms in
V, as shown by the following theorem, which is Lemma 14.6 in [5].

Theorem 2.2. If V is a congruence permutable variety and w(x̄, z) is a term in the
free algebra on X ∪ z, then there exist commutator words ci so that

w(x̄, z) ≈ w(z̄) + c1 + c2 + . . .+ cm

Here, u+ v is defined as m(u, z, v), and associates to the right.

As it turns out, commutator words with enough variables always trivialise in a nilpo-
tent congruence modular varietie generated by a finite algebra. The following is Theorem
14.16 in [5].

Theorem 2.3. Let A be a finite nilpotent algebra that is a product of algebras of
prime power order such that V = V(A) is a congruence modular variety. Then, V is
finitely based. Morevover, there is an integer M such that if w(x, z) is a commutator
word in more than M variables, then V |= w(x, z) ≈ z.

This theorem also carries within it a proof that if A is finite and nilpotent of class
k, any other algebra contained within V(A) is nilpotent of class at most k.
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2.3. Definable Principal Subcongruences A first-order formula Φ(u, v, x, y) with
four free variables is called a congruence formula for a class K of algebras provided that
for every algebra A ∈ K,

if A |= Φ(a, b, c, d), then 〈a, b〉 ∈ CgA(c, d)

A class K of algebras is said to have definable principal subcongruences if and only
if there are congruence formulas Φ(u, v, x, y) and Ψ(u, v, x, y) so that for every A ∈ K
and every c, d ∈ A with c 6= d, there exist a, b ∈ A with a 6= b so that

1. A |= Ψ(a, b, c, d) and

2. Φ(u, v, a, b) defines CgA(a, b) .

In other words, if a principal congruence on any algebra in K is chosen, the first formula
Ψ is capable of finding another principal congruence contained within it that is definable
by the second formula Φ. This definition is introduced by Baker and Wang in [2], where
they prove another finite basis theorem:

Theorem (Baker, Wang). Let V be a variety with only finitely many fundamental
operations and suppose that V has definable principal subcongruences. Then, V is finitely
based if and only if Vsi is finitely axiomatisable.

A variation on the proof of this theorem yields the following result, whose proof we
reproduce from McNulty & Wang’s unpublished work.

Theorem 2.4. If V is a variety and Vsi has definable principal subcongruences, then
Vsi is finitely axiomatisable relative to V. In particular, if V is finitely based, then Vsi is
finitely axiomatisable.

Proof. Let Σ be a finite set of elementary sentences which axiomatises V, and let
Φ(u, v, x, y) and Ψ(u, v, x, y) be the formulas witnessing that Vsi has definable princi-
pal subcongruences. Let Θ be the following set of sentences:

Σ ∪ {∃u, v, [u 6= v ∧ ∀z, w(z 6= w ⇒ ∃x, y(Φ(u, v, x, y) ∧Ψ(x, y, z, w)))]}

We claim that Θ axiomatises Vsi.
On one hand, suppose S ∈ Vsi. Let 〈c, d〉 be a crticial pair for S. So, c 6= d and

〈c, d〉 belongs to every nontrivial congruence. Now, let e, f ∈ S with e 6= f . Because
Vsi has definable principal subcongruences, there are a, b ∈ S where a 6= b so that
S |= Ψ(a, b, e, f), and Φ(x, y, a, b) defines CgS(a, b). Since a 6= b and 〈c, d〉 is critical
pair, 〈c, d〉 ∈ CgS(a, b), so S |= Φ(c, d, a, b). So,

S |= {∃u, v, [u 6= v ∧ ∀z, w(z 6= w ⇒ ∃x, y(Φ(u, v, x, y) ∧Ψ(x, y, z, w)))]}

Since S is in V, S |= Σ also. Therefore, S |= Θ.
Now, suppose S |= Θ. Then, S ∈ V since Σ axiomatises V. But also, since S believes

the second part of Θ and Φ and Ψ are congruence formulas, there exist c, d ∈ S so that
c 6= d and 〈c, d〉 is contained within any other principal congruence. So, 〈c, d〉 is a critical
pair for S and S is subdirectly irreducible.
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In light of this and of Theorem 2.3, in order to prove our main result, we must prove
the following:

Theorem 2.5. Let A be a finite nilpotent algebra that is a product of algebras of
prime power order such that V = V(A) is a congruence modular variety. Then, Vsi has
definable principal subcongruences.

We will do this by using part (3) of Theorem 2.1. Recall that the membership
condition 〈c, d〉 ∈ CgA(a, b) is equivalent to the presence of some unary polynomial p(x)
so that {p(a), p(b)} = {c, d}. In this paper, we define the complexity of p(x) as the
number of parameters used in p. So, if we can limit the complexity of p in some way
that is determined entirely by the variety, we can find a first-order sentence equivalent to
the membership condition in question. This will be our strategy to complete the proof
of the main result.

3. Finding Φ(u, v, x, y)

We begin with the following handy lemma, which follows directly from the definition
of the commutator.

Lemma 3.1. Let V be any variety. Let A ∈ V, and let α ∈ Con(A) be an abelian
congruence. Suppose 〈a, b〉 ∈ α, and let r(u, v, ȳ) be a term so that rA(b, b, d̄) = b for
any sequence d̄ of parameters. Then, it is also the case that rA(a, b, d̄) = rA(a, b, ē) for
any sequences of parameters d̄ and ē. In other words, r only depends on the first two
coordinates.

Proof. Let r be as above. Then, since 〈a, b〉 ∈ α and α is an abelian congruence, the
following diagram holds:

r(b, b, d̄) = b α b = r(b, b, ē)

α α

r(a, b, d̄) α r(b, b, d̄) = b α b = r(b, b, ē) α r(a, b, ē)

So, by the definition of the commutator and since 〈r(b, b, d̄), r(b, b, ē)〉 ∈ 0A, we have
〈r(a, b, d̄), r(a, b, ē)〉 ∈ 0A also.

This tells us the following information regarding commutator words, which will be
useful later.

Corollary 3.2. Let w(x, ȳ, z) be a commutator word in V with z as its neutral
element. Let α ∈ Con(A) be an abelian congruence. Then, for any 〈a, b〉 ∈ α and any
parameters d̄, we have that w(a, d̄, b) = b.
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Proof. Suppose w(x, ȳ, z) is a commutator as above. Set r(u, v, ȳ) = w(u, ȳ, v), and
let a, b ∈ α and d̄ be any sequence of parameters. Since w is a commutator word,
w(z, ȳ, z) ≈ z, so rA(b, b, d̄) = b. So, by Lemma 3.2, w only depends on its first and last
coordinates. So, w(a, d̄, b) = w(a, b, . . . , b, b) = b since w is a commutator word.

Now, we prove the existence of our desired Φ.

Theorem 3.3. Let V be a locally finite, nilpotent, congruence modular variety. Then,
there exists a congruence formula Φ(u, v, x, y) so that for any A ∈ V and abelian principal
congruence α = CgA(a, b), α is defined by Φ(u, v, a, b).

Proof. Let V and A be as stated, and α = CgA(a, b). First, we observe that since V is
congruence permutable with Mal’cev term m,

〈c, d〉 ∈ CgA(a, b)⇔ CgA(c, d) ⊆ CgA(a, b)

⇔ CgA(m(c, d, b), b) ⊆ CgA(a, b)

⇔ 〈m(c, d, b), b〉 ∈ CgA(a, b)

So, we only have to worry about characterising membership conditions of the form
〈c, b〉 ∈ CgA(a, b). We claim that such a membership can be witnessed by a binary term.

Suppose, indeed, that 〈c, d〉 ∈ CgA(a, b). Then, there is a unary polynomial p =
s(x, d̄) witnessing the membership. Suppose without loss of generality that p(a) = c and
p(b) = b. Now, set

r(u, v, ȳ) = m(s(u, ȳ), s(v, ȳ), v)

Now, for any parameters ē, we have that r(b, b, ē) = m(s(b, ē), s(b, ē), b) = b. So, by
Lemma 3.1 r(a, b, d̄) = r(a, b, b̄) = c and r(b, b, d̄) = r(b, b, b̄) = b where b̄ is the sequence
of the same length as ē with b in every coordinate. Define t(x, y) := r(x, y, y, . . . , y).
Then, t(a, b) = c and t(b, b) = b. So the polynomial t(x, b) witnesses the membership
condition.

Now, let T be a set of representatives for all congruence classes of terms in the free
algebra in V on two generators. This free algebra is finite, since V is locally finite. So,
we can set Φ(u, v, x, y) to be the sentence∨

t∈T
(t(x, y) ≈ m(u, v, y) ∧ t(y, y) ≈ y)

4. Finding Ψ(u, v, x, y)

The monolith of a nilpotent algebra is always ableian and principal, so 3.3 gets us
halfway to definable principal congruences. Now, we must find Ψ to link any given
principal congruence to the monolith.
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Theorem 4.1. Let A be a finite nilpotent algebra that is the product of algebras of
prime power order such that V = V(A) is a congruence modular variety. Then, there
exists a congruence formula Ψ(u, v, x, y) so that for any a 6= b ∈ S where S ∈ Vsi, there
is a critical pair 〈c, d〉 of S so that Ψ(c, d, a, b) is satisfied in S.

This theorem is a direct result of the following:

Theorem 4.2. Let A be a finite nilpotent algebra that is the product of algebras
of prime power order such that V = V(A) is a congruence modular variety. Suppose
S ∈ Vsi. Then, for any a 6= b ∈ S, there exists some c so that 〈c, b〉 is a critical pair,
and the membership 〈c, b〉 ∈ CgS(a, b) can be witnessed by a unary polynomial whose
complexity is bounded entirely in terms of V.

Proof. Let V and S be as stated above. Let

0S = ζ0 ≤ ζ1 ≤ . . . ≤ ζk = 1S

be the upper central series of S. Since S belongs to V, the nilpotence degree k of S is
dependent entirely on V. Recall that ζi+1/ζi = ζ(S/ζi) for each i < k.

Claim 1) For i > 0, given a 6= b so that 〈a, b〉 ∈ ζi+1, there is some c′ 6= b so that
〈c′, b〉 ∈ ζi and 〈c′, b〉 ∈ CgS(a, b) can be witnessed by a unary polynomial based on a
commutator word.

Certainly, there exists some c so that 〈c, b〉 ∈ ζi: since the monolith µ is contained
in ζi, we can pick c from b/µ. We know that there is c 6= b in this congruence class,
since nilpotent subdirectly irreducible algebras are congruence uniform. So, if no such c
existed, S would be a trivial algebra.

So, 〈c, b〉 ∈ ζi. Pick a unary polynomial and parameters p(x) = s(x, d̄) so that
p(a) = c and p(b) = b. Now, define r(x, ȳ, z) := m(s(x, ȳ), s(z, ȳ), z). Note that r now
satisfies the following three criteria:

1. r(a, d̄, b) ζi r(b, d̄, b)

2. r(b, d̄, b) = b

3. r(a, d̄, b) 6= b

We claim that (1-3) can be satisfied by a commutator word, also. By 2.2, there exist
commutator words w1, . . . , wm with neutral element z so that

r(x, ȳ, z) ≈ r(z, . . . , z) + w1(x, ȳ, z) + . . .+ wm(x, ȳ, z)

We claim that each wi satisfies (1) and (2). The latter is clear, since wi is a commutator
word and therefore satisfies wi(z, ȳ, z) ≈ z. For the former, recall that by construction,
ζi+1/ζi is an abelian congruence in S/ζi. So, we can apply Corollary 3.2 to 〈a/ζi, b/ζi〉 ∈
ζi+1/ζi and see that

w(a, d̄, b)/ζi = w(a/ζi, d̄/ζi, b/ζi) = b/ζi = w(b, d̄, b)/ζi
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We also claim that there is at least one wj for which wj(a, d̄, b) 6= b. Suppose not. Then,
using x+b y as shorthand for m(x, b, y),

r(a, d̄, b) = r(b, . . . , b) +b w1(a, d̄, b) +b . . .+b wm(a, d̄, b)

= r(b, . . . , b) +b b+b b+b . . . ,+bb

= r(b, . . . , b)

But, r(b, . . . , b) = r(b, d̄, b) = b. So, r(a, d̄, b) = b, contradicting item (3) from above. So,
wj does indeed satsify (1-3). Now, we can set c′ to be wj(a, d̄, b), and the claim is satisfied.

Claim 2) Given a 6= b so that 〈a, b〉 ∈ ζ1, there is some c so that 〈c, b〉 is a critical
pair, and the membership condition 〈c, b〉 ∈ CgS(a, b) can be witnessed by a unary
polynomial built from some binary term.

Let 〈a, b〉 ∈ ζ1 as above. Pick some c so that 〈c, b〉 is a critical pair. Similar to
the proof in claim 1, choose a unary polynomial p(x) = s(x, d̄) so that p(a) = c and
p(b) = b. Now, set r(u, v, ȳ) = m(p(u, ȳ), p(v, ȳ), v). Then, r(b, b, ē) = b for any se-
quence ē of parameters. So, since 〈a, b〉 ∈ ζ1 and ζ1 is abelian, lemma 3.1 applies and
c = r(a, b, d̄) = r(a, b, ē) for any parameters ē. So, set t(x, y) = r(x, y, y, . . . , y). Then,
t(a, b) = c and t(b, b) = b, so the unary polynomial q(x) = t(x, b) witnesses the member-
ship condition.

With these two claims, we can prove the theorem. Let a 6= b ∈ S. Trivially, 〈a, b〉 ∈
ζk. Apply claim 1 to obtain c1 so that 〈c1, b〉 ∈ ζk−1, as witnessed by a unary polynomial
based on a commutator word. Then, iterate claim 1 on c1 and its descendents to obtain
a sequence c1, . . . , ck−1 so that for each i, 〈ci, b〉 ∈ ζk−i, and each of these membership
conditions is realised by a unary polynomial qi(x) based on a commutator word. None
of these commutator words are trivial, so by Theorem 2.3, they all use no more than M
parameters.

Then, apply claim 2 to ck−1 to get c so that 〈c, b〉 is a critical pair, and this mem-
bership condition is realised by a unary polynomial qk(x) built from a binary term.

The composition of a two unary polynomials is again unary, so composing each qi
together, we now have a unary polynomial q(x) so that q(a) = c and q(b) = b, realising
the condition 〈c, b〉 ∈ CgS(a, b). This polynomial is a composition of at most k many
polynomials of complexity no more than M , and one polynomial with complexity 2.
Since k and M both depend on the variety V, not on S, this proves the theorem.

Now, we can prove Theorem 4.1.

Proof. Given a 6= b in S, there is a critical pair 〈c, d〉 so that 〈c, d〉 ∈ CgS(a, b) is
witnessed by a unary polynomial of complexity bounded above by some n depending on
V by Theorem 4.2. Let T be a set of representatives for all congruence classes of terms
in the free algebra in V on n generators. This free algebra is finite, since V is locally
finite. So, Φ(u, v, x, y) is the sentence∨

t∈T
(t(x, y) ≈ m(u, v, y) ∧ t(y, y) ≈ y)
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5. Future Research

A number of natural extensions of our result beg investigation. Firstly, the hypothesis
of Theorem 1.1 that the generating algebra must be a product of algebras of prime power
order is somewhat restrictive; getting rid of it would be preferable. This would also
generalise the author’s other work on varieties of groups.

Problem 5.1. Let V be a congruence modular variety generated by a finite nilpotent
algebra A. Then, is it true that Vsi is finitely axiomatisable?

This question can be generalised; what hypotheses can nilpotence be replaced by to
still preserve the result?

Problem 5.2. Let V be a variety generated by a finite algebra A. What properties
does V need to have in order for Vsi to be finitely axiomatisable?

By Baker and Wang’s Theorem 2.4 shows that if V is finitely based and has defin-
able principal subcongruences, then Vsi is finitely based as well. However, there is not
much available in the literature to tell us when the converse might be true. This begs
investigation as well.

Problem 5.3. Let V be a variety so that Vsi is finitely axiomatisable. What proper-
ties does V need to have so that V is finitely based?
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