
Joe Foster

Integration by Parts

To reverse the chain rule we have the method of u-substitution. To reverse the product rule we also have a method, called

Integration by Parts. The formula is given by:

Theorem (Integration by Parts Formula)

ˆ

f(x)g(x) dx = F (x)g(x) −
ˆ

F (x)g′(x) dx

where F (x) is an anti-derivative of f(x).

Remember, all of the techniques that we talk about are supposed to make integrating easier! Even though this formula

expresses one integral in terms of a second integral, the idea is that the second integral,
´

F (x)g′(x) dx, is easier to evaluate.

The key to integration by parts is making the right choice for f(x) and g(x). Sometimes we may need to try multiple

options before we can apply the formula. Let’s see it in action.

Example 1 Find

ˆ

x cos(x) dx.

We have to decide what to assign to f(x) and what to assign to g(x). Our goal is to make the integral easier. One thing

to bear in mind is that whichever term we let equal g(x) we need to differentiate - so if differentiating makes a part of the

integrand simpler that’s probably what we want! In this cases differentiating cos(x) gives − sin(x), which is no easier to

deal with. But differentiating x gives 1 which is simpler. So we have,

g(x) = x f(x) = cos(x)

g′(x) = 1 F (x) = sin(x)

ˆ

x cos(x) dx = x sin(x) −
ˆ

sin(x) dx

= x sin(x) + cos(x) + C

Example 2 Evaluate

ˆ 4

0

xe−x dx.

g(x) = x f(x) = e−x

g′(x) = 1 F (x) = −e−x

ˆ 4

0

xe−x dx = −xe−x
∣

∣

∣

4

0
−
ˆ 4

0

−e−x dx

= −xe−x − e−x
∣

∣

∣

4

0

=
[

−4e−4 − e−4
]

−
[

0 − e−0
]

= −5e−4 + 1

= 1 − 5e−4
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Example 3 Evaluate

ˆ

x2ex dx.

g(x) = x2 f(x) = ex

g′(x) = 2x F (x) = ex

ˆ

x2ex dx = x2ex − 2

ˆ

xex dx.

It’s at this point we see that we still cannot integrate the integral on the write easily. This is okay. Sometimes we may

have to apply the integration by parts formula more than once!

g1(x) = x f1(x) = ex

g′
1(x) = 1 F1(x) = ex

ˆ

x2ex dx = x2ex − 2

ˆ

xex dx

= x2ex − 2

[

xex −
ˆ

ex dx

]

= x2ex − 2xex + 2ex + C

=
(

x2 − 2x + 2
)

ex + C

The previous technique works for any integral of the form

ˆ

xnemx dx, where n is any positive integer and m is any integer.

What if n was negative? Then this case we would set g(x) = ex.

Example 4 In Example 3 we have to apply the Integration by Parts Formula multiple times. There is a convenient way

to “book-keep” our work. This is done by creating a table. Let’s see how by examining Example 3 again.

ˆ

x2ex dx.

Let g(x) = x2 and f(x) = ex. Then,

Differentiate g(x) Integrate f(x)

x2 ex

2x ex

2 ex

0 ex

+

−

+

Then the integral is,

ˆ

x2ex dx = +x2 · ex − 2x · ex + 2 · ex + C

=
(

x2 − 2x + 2
)

ex + C

We have actually used the integration by parts formula, but we have just made our lives easier by condensing the work

into a neat table. This method is extremely useful when Integration by Parts needs to be used over and over again.
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The next example exposes a potential flaw in always using the tabular method above. Sometimes applying the integration

by parts formula may never terminate, thus your table will get awfully big.

Example 5 Find the integral

ˆ

ex sin(x) dx.

We need to apply Integration by

Parts twice before we see something:

(1)

u = ex dv = sin(x)

du = ex dx v = − cos(x)

(2)

u = ex dv = cos(x)

du = ex dx v = sin(x)

ˆ

ex sin(x) dx = −ex cos(x) +

ˆ

ex cos(x) dx

= −ex cos(x) +

(

ex sin(x) −
ˆ

ex sin(x) dx

)

= −ex cos(x) + ex sin(x) −
ˆ

ex sin(x) dx

Notice that now the integral we are interested in,

ˆ

ex sin(x) dx, appears on both the

left and right hand side of the equation. So, if we add this integral to both sides we

get

=⇒ 2

ˆ

ex sin(x) dx = ex (− cos(x) + sin(x))

=⇒
ˆ

ex sin(x) dx =
ex (sin(x) − cos(x))

2

This “trick” comes up often when we are dealing with the product of two functions with “non-terminating” derivatives.

By this we mean that you can keep differentiating functions like ex and trig functions indefinitely and never reach

0. Polynomials on the other hand will eventually “terminate” and their nth derivative (where n is the degree of the

polynomial) is identically 0.
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Practice Problems

Try some of the problems below. If you get stuck, don’t worry! There are hints on the next page! But do try without

looking at them first, chances are you won’t get hints on your exam.

1.

ˆ

t sin(2t) dt

2.

ˆ

x2 cos(3x) dx

3.

ˆ

sin−1(x) dx

4.

ˆ

p5 ln(p) dp

5.

ˆ 1

0

(x2 + 1)e−x dx

6.

ˆ 9

4

ln(y)√
y

dy

7.

ˆ π

0

x3 cos(x) dx

8.

ˆ

√
3

1

tan−1(1/x) dx

9.

ˆ 2

1

(ln(x))2

x3
dx

10.

ˆ

(ln(x))2 dx

11.

ˆ

4x cos(2 − 3x) dx

12.

ˆ 0

6

(2 + 5x)ex/3 dx

13.

ˆ

(t2 + 3t) sin(2t) dt

14.

ˆ π

0

x2 cos(4x) dx

15.

ˆ

(4z3 − 9z2 + 7z + 3)e−z dz

16.

ˆ

8te7t dt

17.

ˆ √
x3 ln( 3

√
x) dx

18.

ˆ

t sec2(2t) dt

19.

ˆ

e−θ cos(2θ) dθ

20.

ˆ

e2z cos(z/4) dz

21.

ˆ 2

1

ln(x)

x2
dx

22.

ˆ 1

0

y

e2y
dy

23.

ˆ 1/2

0

cos(x) ln(sin(x)) dx

24.

ˆ

x4(ln(x))2 dx

Challenge Problems

1.

ˆ

ln(x) dx

2.

ˆ

t7 sin(2t4) dt

3.

ˆ 4

1

(2 − x)2 ln(4x) dx

4.

ˆ

tan−1(x) dx

5.

ˆ

sin−1(x) dx

6.

ˆ

cos(
√

x) dx

7.

ˆ

t3e−t2

dt

8.

ˆ

x ln(1 + x) dx

9.

ˆ

sin(ln(x)) dx
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Hints to Practice Problems

1. g(t) = t

2. Apply twice,

start with g(x) = x2

3. g(x) = sin−1(x)

4. g(p) = ln(p)

5. Apply twice,

start with g(x) = x2 + 1

6. g(y) = ln(y)

7. Apply three times,

start with g(x) = x3

8. g(x) = tan−1(1/x)

9. Apply twice,

start with g(x) = (ln(x))2

10. g(x) = (ln(x))2

11. g(x) = 4x

12. g(x) = 2 + 5x

13. Apply twice,

start with g(t) = t2 + 3t

14. Apply twice,

start with g(x) = x2

15. Apply three times,

start with g(z) = 4z3−9z2+7z+3

16. g(t) = 8t

17. g(x) = ln(x)

18. g(t) = t

19. Think Example 5.

20. Think Example 5.

21. g(x) = ln(x)

22. g(y) = y

23. g(x) = ln(sin(x))

24. Apply twice,

start with g(x) = (ln(x))2

Hints to Challenge Problems

1. g(x) = ln(x), f(x) = 1

2. g(t) = t4

3. g(x) = ln(4x)

4. g(x) = tan−1(x)

5. g(x) = sin−1(x)

6. u =
√

x, then parts.

7. u = −t2, then parts.

8. u = 1 + x, then parts.

9. eu = x, then parts.
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Answers to Practice Problems

1.
1

4
(sin(2t) − 2t cos(2t)) + C

2.
1

27

(

(9x2 − 2) sin(3x) + 6x cos(3x)
)

+ C

3. x sin−1(x) +
√

1 − x2 + C

4.
1

36
p6 (6 ln(p) − 1) + C

5.
3e − 6

e

6. 4

(

ln

(

27

4

)

− 1

)

7. 3
(

4 − π2
)

8.
1

12

((

2
√

3 − 3
)

π + ln(64)
)

9.
1

16
(3 − ln(2)(ln(2) + 1))

10. x
(

ln(x)2 − 2 ln(x) + 2
)

+ C

11.
1

9
(4 cos(2 − 3x) − 12x sin(2 − 3x)) + C

12. −39 − 51e2

13.
1

4

((

−2t2 − 6t + 1
)

cos(2t) + (2t + 3) sin(2t)
)

+ C

14.
π

8

15. −(4z3 + 3z+13z + 16)e−z + C

16.
1

49
e7t (56t − 8) + C

17.
2

75
x5/2 (5 ln(x) − 2) + C

18.
1

4
(2t tan(2t) + ln | cos(2t|) + C

19.

20.
4

65
e2z

(

8 cos
(z

4

)

+ sin
(z

4

))

+ C

21.
1 − ln(2)

2

22.
1

4

(

1 − 3

e2

)

23. sin

(

1

2

) (

ln

(

sin

(

1

2

))

− 1

)

24.
1

125
x5

(

25 ln(x)2 − 10 ln(x) + 2
)

+ C

Answers to Challenge Problems

1. x (ln(x) − 1) + C

2.
1

16

(

sin(2t4) − 2t4 cos(2t4)
)

+ C

3. ln
(

65, 536 · 22/3
)

− 4

4. x tan−1(x) − ln(
√

1 + x2) + C

5. x sin−1(x) +
√

1 − x2 + C

6. 2
√

x sin(
√

x) + 2 cos(
√

x) + C

7. −1

2
et2 (

t2 + 1
)

+ C

8.
1

4

(

2(x2 − 1) ln(1 + x) − x + 2
)

+ C

9.
1

2
x (sin(ln(x)) − cos(ln(x))) + C
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Solutions to Practice Problems

1. Let g(t) = t and f(t) = sin(2t). So g′(t) = 1 and F (t) = −1

2
cos(2t). Then,

ˆ

t sin(2t) dt = −1

2
t cos(2t) +

1

2

ˆ

cos(2t) dt = −1

2
t cos(2t) +

1

4
sin(2t) + C =

1

4
(sin(2t) − 2t cos(2t)) + C

2. Let g(x) = x2 and f(x) = cos(3x). Then,

Differentiate g(x) Integrate f(x)

x2 cos(3x)

2x 1

3
sin(3x)

2 − 1

9
cos(3x)

0 − 1

27
sin(3x)

+

−

+

ˆ

x2 cos(3x) dx =
1

3
x2 sin(3x) +

2

9
x cos(3x) − 2

27
sin(3x) + C

=
1

27

((

9x2 − 2
)

sin(3x) + 6x cos(3x)
)

+ C

3. Let g(x) = sin−1(x) and f(x) = 1. So g′(x) =
1√

1 − x2
and F (x) = x.

Let u = 1 − x2. So −1

2
du = x dx. Then,

ˆ

sin−1(x) dx = x sin−1(x) −
ˆ

x√
1 − x2

dx = x sin−1(x) +
1

2

ˆ

1√
u

du = x sin−1(x) +
√

u + C = x sin−1(x) +
√

1 − x2 + C

4. Let g(p) = ln(p) and f(p) = p5. So g′(p) =
1

p
and F (p) =

1

6
p6. Then,

ˆ

p5 ln(p) dp =
1

6
p6 ln(p) − 1

6

ˆ

p5 dp =
1

6
p6 ln(p) − 1

36
p6 + C =

1

36
p6 (6 ln(p) − 1) + C

5. Let g(x) = x2 + 1 and f(x) = e−x. Then,

Differentiate g(x) Integrate f(x)

x2 + 1 e−x

2x − e−x

2 e−x

0 − e−x

+

−

+

ˆ 1

0

(x2 + 1)e−x dx = −(x2 + 1)e−x − 2xe−x − 2e−x
∣

∣

∣

1

0

= −e−x
(

x2 + 2x + 3
)

∣

∣

∣

1

0

= −6e−1 + 3

=
3e − 6

e

6. Let g(y) = ln(y) and f(y) = y−1/2. So g′(y) = y−1 and F (y) = 2y1/2. Then,

ˆ 9

4

ln(y)√
y

dy = 2
√

y ln(y)
∣

∣

∣

9

4
− 2

ˆ 9

4

y−1/2 dy = 2
√

y ln(y) − 4
√

y
∣

∣

∣

9

4
= 6 ln(9) − 12 − [4 ln(4) − 8]

= 4 ln(27) − 4 − 4 ln(4) = 4

(

ln

(

27

4

)

− 1

)
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7. Let g(x) = x3 and f(x) = cos(x). Then,

Differentiate g(x) Integrate f(x)

x3 cos(x)

3x2 sin(x)

6x − cos(x)

6 − sin(x)

0 cos(x)

+

−

+

−

ˆ π

0

x3 cos(x) dx = x3 sin(x) + 3x2 cos(x) − 6x sin(x) − 6 cos(x)
∣

∣

∣

π

0

= x
(

x2 − 6
)

sin(x) + 3
(

x2 − 2
)

cos(x)
∣

∣

∣

π

0

= 0 − 3
(

π2 − 2
)

− [0 − 6]

= 3
(

4 − π2
)

8. Let g(x) = tan−1(1/x) and f(x) = 1. So g′(x) = − 1

x2 + 1
and F (x) = x.

Let u = x2 + 1. So
1

2
du = x dx. Then,

ˆ

√
3

1

tan−1

(

1

x

)

dx = x tan−1(x)

(

1

x

)

∣

∣

∣

√
3

1
+

ˆ

√
3

1

x

x2 + 1
dx = x tan−1

(

1

x

)

∣

∣

∣

√
3

1
+

1

2

ˆ x=
√

3

x=1

1

u
du

= x tan−1

(

1

x

)

+
1

2
ln |u|

∣

∣

∣

x=
√

3

x=1
= x tan−1

(

1

x

)

+
1

2
ln(x2 + 1)

∣

∣

∣

√
3

1

=
√

3 tan−1

(
√

3

3

)

+
1

2
ln(4) −

[

tan−1(1) +
1

2
ln(2)

]

=
√

3
π

6
+ ln(2) − π

4
− 1

2
ln(2)

=
1

12

(

(2
√

3 − 3)π + ln(64)
)

9. Let g1(x) = (ln(x))2 and f1(x) =
1

x3
. So g′

1(x) =
2 ln(x)

x
and F1(x) = − 1

2x2
.

Let g2(x) = ln(x) and f2(x) =
1

x3
. So g′

2(x) =
1

x
and F2(x) = − 1

2x2
. Then,

ˆ

(ln(x))2

x
dx = − (ln(x))2

2x2
+

ˆ

ln(x)

x3
dx = − (ln(x))2

2x2
− ln(x)

2x2
+

1

2

ˆ

1

x3
dx = − (ln(x))2 + ln(x)

2x2
− 1

4x2
+ C.

ˆ 2

1

(ln(x))2

x
dx = −2(ln(x))2 + 2 ln(x) + 1

4x2

∣

∣

∣

2

1
= −2(ln(2))2 + 2 ln(2) + 1

16
−

[

−0 + 0 + 1

4

]

=
1

16

(

3 − 2(ln(2))2 − 2 ln(2)
)

10. Let g1(x) = (ln(x))2 and f1(x) = 1. So g′
1(x) =

2 ln(x)

x
and F1(x) = x.

Let g2(x) = ln(x) and f2(x) = 1. So g′
2(x) =

1

x
and F2(x) = x. Then,

ˆ

(ln(x))2 dx = x(ln(x))2 − 2

ˆ

ln(x) dx = x(ln(x))2 − 2

[

x ln(x) −
ˆ

1 dx

]

= x(ln(x))2 − 2 [x ln(x) − x] + C = x
(

(ln(x))2 − 2 ln(x) + 2
)

+ C
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