The Taylor Remainder

Taylor's Formula: If f(x) has derivatives of all orders in a nopen interval I containing a, then for each positive integer n and for each $x \in I$,

$$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n + R_n(x)$$

where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}$$

for some c between a and x.

Definitions: The second equation is called **Taylor's formula**. The function $R_n(x)$ is called the remainder of order n or the error term for the approximation of f(x) by $P_n(x)$ over I.

If $R_n(x) \to 0$ as $n \to \infty$ for all $x \in I$, we say that the Taylor Series generated by f(x) at x = a converges to f(x) on I, and we write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Often we can estimate $R_n(x)$ without knowing the value of c.

The Remainder Estimation Theorem: If there is a positive constant M such that $|f^{(n+1)}(t)| \leq M$ for all t between x and a, inclusive, then the remainder term $R_n(x)$ in Taylor's Theorem satisfies the inequality

$$|R_n(x)| \le M \frac{|x-a|^{n+1}}{(n+1)!}.$$

If this inequality holds for every n and the other conditions of Taylor's Theorem are satisfied by f(x), then the series converges to f(x).

Example 1: Show that the Taylor Series generated by $f(x) = e^x$ at x = 0 converges to f(x) for every value of x.

f(x) has derivatives of all orders on $(-\infty, \infty)$. Using the Taylor Polynomial generated by $f(x) = e^x$ at a = 0 and Taylor's formula, we have

$$e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + R_n(x)$$

where $R_n(x) = \frac{e^c}{(n+1)!} x^{n+1}$ for some c between 0 and x. Recall that e^x is an increasing function, so if 0 < |c| < |x|, we know $1 < e^{|c|} < e^{|x|}$. Thus,

$$\lim_{n \to \infty} |R_n(x)| = \lim_{n \to \infty} \frac{e^c |x|^{n+1}}{(n+1)!} \le \lim_{n \to \infty} \frac{e^{|x|} |x|^{n+1}}{(n+1)!} = e^{|x|} \lim_{n \to \infty} \frac{|x|^{n+1}}{(n+1)!} = 0.$$

Hence, since $\lim_{n \to \infty} R_n(x) = 0$ for all x, the Taylor series converges to e^x on $(-\infty, \infty)$.

Example 2: Estimate the error if $P_2(x) = 1 - \frac{x^2}{2}$ is used to estimate the value of $\cos(x)$ at x = 0.6.

We are estimating $f(x) = \cos(x)$ with its 2nd degree Taylor polynomial (centred at zero), so we can bound the error by using the remainder estimation Theorem, with n = 2. So,

Error =
$$|R_2(x)|\Big|_{x=0.6} = \left|\frac{f^3(c)}{3!}x^3\right|\Big|_{x=0.6} = \frac{|\sin(c)|}{3!}|x|^3\Big|_{x=0.6} \le \frac{1}{3!}|x|^3\Big|_{x=0.6} = 0.036.$$

Example 3: For approximately what values of x can you replace sin(x) by $x - \frac{x^3}{6}$ with an error of magnitude no greater than 4×10^{-3} ?

We wish to estimate $f(x) = \sin(x)$ with its 3rd degree Taylor polynomial (centred at zero), so first we bound the error using the remainder estimation theorem:

Error =
$$|R_3(x)| = \left|\frac{f^4(c)}{4!}x^4\right| = \frac{|\sin(c)|}{4!}x^4 \le \frac{1}{4!}x^4.$$

We want the error to be less than or equal to 4×10^{-3} , so we solve the following inequality,

$$\frac{1}{4!}x^4 \le 0.004 \Longrightarrow |x| \le \sqrt[4]{4! \cdot 0.004} \approx 0.556.$$

Thus the values of x in the interval [-0.556, 0.556] can be approximated to the desired accuracy.

Note that the approximations in the previous two examples can be improved by using the Alternating Series Estimation Theorem instead.

Example 4: Use the remainder estimation theorem to estimate the maximum error when approximating $f(x) = e^x$ by $P_2(x) = 1 + x + \frac{x^2}{2}$ on the interval $\left[-\frac{5}{6}, \frac{5}{6}\right]$.

We wish to estimate $f(x) = e^x$ with its 2nd degree Taylor polynomial (centred at zero), so first lets bound the error for a general x:

Error =
$$|R_2(x)| = \left|\frac{f^{(3)}(c)}{3!}x^3\right| \le \frac{e^c}{3!}|x|^3$$
,

where c lies between a = 0 and x. Now, since we are looking at only the interval $\left[-\frac{5}{6}, \frac{5}{6}\right]$, we have that $|c| < \frac{5}{6}$ for each x in this interval. So, $e^c \le e^{5/6}$, since e^x is an increasing function.

Now we apply some guessing work. We are approximating values of e^x , so it doesn't seem right to use one of these values in our bound (if we could get the value of $e^{5/6}$ then why would we merely approximate?), so we should bound $e^{5/6}$. There are many ways to do this, and you may use any justification you see fit. We shall use,

$$e^{5/6} < e^1 < 3.$$

Thus, for $|x| \leq \frac{5}{6}$, the error can be bounded by

Error
$$\leq \frac{e^c}{3!} |x|^3 \leq \frac{e^{5/6}}{3!} |x|^3 \leq \frac{3}{3!} \left| \frac{5}{6} \right|^3 = 0.289.$$

Practice Problems

Estimate the maximum error when approximating the following functions with the indicated Taylor polynomial centred at a, on the given interval.

1.
$$f(x) = \sqrt{x}$$
,
 $n = 2, a = 4$,
 $4 \le x \le 4.2$ 4. $f(x) = \sin(x)$,
 $n = 4, a = \pi/6$,
 $0 \le x \le \pi/3$ 7. $f(x) = e^{x^2}$,
 $n = 3, a = 0$,
 $0 \le x \le 0.1$ 2. $f(x) = x^{-2}$,
 $n = 2, a = 1$,
 $0.9 \le x \le 1.1$ 5. $f(x) = \sec(x)$,
 $n = 2, a = 0$,
 $-0.2 \le x \le 0.2$ 8. $f(x) = x \ln(x)$,
 $n = 3, a = 1$,
 $0.5 \le x \le 1.5$ 3. $f(x) = x^{2/3}$,
 $n = 3, a = 1$,
 $0.8 \le x \le 1.2$ 6. $f(x) = \ln(1 + 2x)$,
 $n = 2, a = 0$,
 $0.5 \le x \le 1.5$ 9. $f(x) = x \sin(x)$,
 $n = 4, a = 0$,
 $-1 \le x \le 1$

Answers to Practice Problems

1.	$\frac{0.008}{512}$	4. $\frac{1}{120} \left(\frac{\pi}{6}\right)^5$	7. $\frac{e^{0.01} \cdot 12.4816}{24} \cdot (0.1)^4$
2.	$\frac{0.004}{0.59049}$	5. ≈ 1.085	8. $\frac{1}{24}$
3.	$\frac{56\cdot 0.0016}{1944\cdot (0.8)^{10/3}}$	6. $\frac{1}{64}$	9. $\frac{1}{24}$