
MATH 142 - Computing Taylor Series Joe Foster

Computing Taylor Series

Definitions: Let f(x) be a function with derivatives of all orders throughout some open interval containing a. Then the

Taylor Series generated by f(x) at x = a is

∞
∑

n=0

fn(a)

n!
(x − a)n = f(a) + f ′(a)(x − a) +

f ′′(a)

2!
(x − a)2 + · · · +

f (n)(a)

n!
(x − a)n + · · · .

The Maclaurin Series generated by f(x) is the Taylor series generated by f(x) at a = 0.

Example 1: Find the Taylor series generated by f(x) =
1

x
at a = 2. Where, if anywhere, does the series converge to

1

x
?

n f (n)(x) f (n)(a)

0
1

x

1

2

1 (−1) ·

1

x2
(−1)

1

22

2 (−1)2
·

2 · 1

x3
(−1)2 2 · 1

23

3 (−1)3
·

3 · 2 · 1

x4
(−1)3 3 · 2 · 1

24

4 (−1)4
·

4 · 3 · 2 · 1

x5
(−1)4 4 · 3 · 2 · 1

25

n (−1)n

·

n!

xn+1
(−1)n

n!

2n+1

The key thing to do when looking for the

general term is to not simplify everything.

You should try and only group those terms

that come from the “same place.” For ex-

ample, when n = 2 we could have cancelled

a 2 from the numerator and denominator

of f ′′(2). But since the 2 in the numerator

came from differentiating and the 2 on the

denominator came from plugging in x = a,

we leave them alone. Leaving factors alone

this way will help you more easily see where

each number in the factor is coming from

and its relation to the value of n.

So, the Taylor Series generated by f(x) =
1

x
centred at a = 2 is given by

∞
∑

n=0

f (n)(a)

n!
(x − a)n =

∞
∑

n=0

(−1)n n!
2n+1

n!
(x − 2)n =

∞
∑

n=0

(−1)n

2n+1
(x − 2)n

Note that

f(x) =

∞
∑

n=0

(−1)n

2n+1
(x − 2)n =

1

2
− (x − 2)

22
+

(x − 2)2

23
− · · · +

(−1)n(x − 2)n

2n+1

is geometric with first term
1

2
and ratio r = − (x − 2)

2
. So it converges (absolutely) for

∣

∣

∣

∣

− (x − 2)

2

∣

∣

∣

∣

< 1 =⇒ |x − 2| < 2 =⇒ 0 < x < 4.

Now we check the endpoints:

x = 0:

∞
∑

n=0

(−1)n

2n+1
(0−2)n =

∞
∑

n=0

(−1)n(−2)n

2n+1
=

∞
∑

n=0

2n

2n+1
=

∞
∑

n=0

1

2
=⇒ diverges by nth term test.

(Also clear since f(x) =
1

x

is not defined at x = 0)

x = 4:

∞
∑

n=0

(−1)n

2n+1
(4 − 2)n =

∞
∑

n=0

(−1)n2n

2n+1
=

∞
∑

n=0

(−1)n

2
=⇒ diverges by nth term test.

Thus the only values of x for which this Taylor Series converges are 0 < x < 4 .
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Example 2: Find the Taylor Series generated by f(x) = cos(x) at a = 0.

n f (n)(x) f (n)(a)

0 cos(x) 1

1 − sin(x) 0

2 − cos(x) −1

3 sin(x) 0

4 cos(x) 1

2n (−1)n cos(x) (−1)n

2n + 1 (−1)n+1 sin(x) (−1)n0

When terms are alternating between 0s and

non-zero terms, take a look at the parity of

the values of n for which they appear. That

is, check if all the 0s occur when n is odd (or

when n is even). Once you figure out which

is which you can ignore all the zero terms

by considering 2n or 2n+1 instead of just n.

If you are dealing with trigonometric func-

tions, it is likely that at some point there

will be some repetition happening. For ex-

ample here f (4)(x) = f(x). So then you

might be able to see what is happening by

only using the terms up until the repeat.

So the Taylor Series generated by f(x) = cos(x) at a = 0 is

∞
∑

n=0

f (n)(a)

n!
(x − a)n =

∞
∑

n=0

(−1)n

(2n)!
x2n

To find the interval of convergence, we can use the Ratio Test:

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(−1)n+1x2(n+1)

(2(n+1))!

(−1)nx2n

(2n)!

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

(−1)n+1x2n+2

(2n + 2)!
· (2n)!

(−1)nx2n

∣

∣

∣

∣

=
x2

(2n + 2)(2n + 1)

n→∞−→ 0

So this Taylor Series converges for all x ∈ R.

Example 3: Find the Taylor Series generated by f(x) = ex.

Note that f (n)(x) = f(x) = ex for every positive integer n. So f (n)(0) = e0 = 1 for each n, so then the Taylor Series

generated by f(x) = ex at a = 0 is given by

∞
∑

n=0

f (n)(a)

n!
(x − a)n =

∞
∑

n=0

xn

n!

One then verifies that it converges for all x ∈ R.
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Practice Problems

Find the Taylor Series generated by the following functions at the given centre. Also find the interval of absolute

convergence of the Taylor Series.

1. f(x) =
1

(1 − x)2
, a = 0

2. f(x) = x4 − 3x2 + 1, a = 1

3. ln(1 + x), a = 0

4. f(x) = x − x3, a = −2

5. sin(πx), a = 0

6. f(x) = ex, a = 3

7. cos(3x), a = 0

8. f(x) =
1

x
, a = −3

9. f(x) = e5x, a = 0

10. f(x) = cos(x), a = π

11. f(x) = xex, a = 0

12. f(x) = sin(x), a =
π

2

13. f(x) =
1√
x

, a = 9

14. f(x) =
1

x2
, a = 1

15. f(x) = cos(x2), a = 0

Answers to Practice Problems

1.

∞
∑

n=0

(n + 1)xn, |x| < 1

2. −1−2(x−1)+3(x−1)2+4(x−1)3+(x−1)4, |x| < ∞

3.

∞
∑

n=1

(−1)n−1

n
xn, |x| < 1

4. 6 − 11(x + 2) + 6(x + 2)2 − (x + 2)3, |x| < ∞

5.
∞

∑

n=0

(−1)nπ2n+1

(2n + 1)!
x2n+1, |x| < ∞

6.
∞

∑

n=0

e3

n!
(x − 3)n, |x| < ∞

7.
∞

∑

n=0

(−1)n32n

(2n)!
x2n, |x| < ∞

8. −
∞

∑

n=0

1

3n+1
(x + 3)n, |x + 3| < 3

9.

∞
∑

n=0

5n

n!
xn, |x| < ∞

10.

∞
∑

n=0

(−1)n+1

(2n)!
(x − π)2n, |x| < ∞

11.

∞
∑

n=1

1

(n − 1)!
xn, |x| < ∞

12.

∞
∑

n=0

(−1)n

(2n)!

(

x − π

2

)2n

, |x| < ∞

13.
1

3
+

∞
∑

n=1

(−1)n 1 · 3 · 5 · · · · · (2n − 1)

2n · 32n+1 · n!
(x−9)n, |x−9| < 9

14.

∞
∑

n=0

(−1)n(n + 1)(x − 1)n, |x − 1| < 1

15.

∞
∑

n=0

(−1)n

(2n)!
x4n, |x| < ∞
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