Section 8.7: Numerical Integration

What to do when there's no nice antiderivative? The antiderivatives of some functions, like $\sin(x^2)$, $1/\ln(x)$ and $\sqrt{1+x^4}$ have no elementary formulas/ When we cannot find a workable antiderivative for a function f(x) that we have to integrate, we can partition the interval of integration, replace f(x) by a closely fitting polynomial on each subinterval, integrate the polynomials and add the results to *approximate* the definite integral of f(x). This is an example of numerical integration. There are many methods of numerical integration but we will study only two: the *Trapezium Rule* and *Simpson's Rule*.

Trapezoidal Approximations: As the name implies, the Trapezium Rule for the value of a definite integral is based on approximating the region between a curve and the *x*-axis with trapeziums instead of rectangles - which, if you recall, we studied when we looked at Riemann integration in Calculus I.

Assume the length of each subinterval is $\Delta x = \frac{b-a}{n}$. Then the area of the trapezium that lies above the *x*-axis in the *i*th subinterval is $T_i = \frac{\delta x}{2} (y_{i-1} + y_i)$ where $y_{i-1} = f(x_{i-1})$ and $y_i = f(x_i)$. Then the area of the under the curve and above the *x*-axis is approximated by the sum of the trapeziums:

$$T = \frac{\Delta x}{2} (y_0 + y_1) + \frac{\Delta x}{2} (y_1 + y_2) + \dots + \frac{\Delta x}{2} (y_{n-1} + y_n)$$

= $\frac{\Delta x}{2} (y_0 + y_1 + y_1 + y_2 + \dots + y_{n-2} + y_{n-1} + y_{n-1} + y_n)$
= $\frac{\Delta x}{2} (y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n)$
= $\frac{\Delta x}{2} \left(y_0 + y_n + 2 \sum_{i=1}^{n-1} y_i \right)$
= $\frac{\Delta x}{2} \left(f(x_0) + f(x_n) + 2 \sum_{i=1}^{n-1} f(x_i) \right)$

The Trapezium Rule: To approximate $\int_{a}^{b} f(x) dx$, use

$$T = \frac{\Delta x}{2} (y_0 + 2y_1 + 2y_2 + \dots + 2y_{n-1} + y_n)$$
$$= \frac{\Delta x}{2} \left(f(x_0) + f(x_n) + 2\sum_{i=1}^{n-1} f(x_i) \right),$$

where the y's are the values of f at the partition points

$$x_0 := a, \ x_1 := a + \Delta x, \ x_2 := a + 2\Delta x, \ \dots, \ x_{n-1} := a + (n-1)\Delta x, \ x_n := a + n\Delta x = b,$$

and $\Delta x = \frac{b-a}{n}$.

Example 1: Use the Trapezium Rule with n = 4 to estimate $\int_{1}^{2} x^{2} dx$. Compare the estimate with the exact value.

Partition the interval [1, 2] into 4 subintervals:

T

$$\Delta x = \frac{2-1}{4} \qquad x_0 = a \qquad x_1 = a + \Delta x \qquad x_2 = a + 2\Delta x \qquad x_3 = a + 3\Delta x \qquad x_4 = a + 4\Delta x \\ = 1 \qquad = 1 + 1 \cdot \frac{1}{4} \qquad = 1 + 2 \cdot \frac{1}{4} \qquad = 1 + 3 \cdot \frac{1}{4} \qquad = 1 + 4 \cdot \frac{1}{4} \\ = \frac{4}{4} \qquad = \frac{5}{4} \qquad = \frac{6}{4} \qquad = \frac{7}{4} \qquad = \frac{8}{4}$$

Now use these points together with the formula for the Trapezium Rule:

$$T = \frac{\Delta x}{2} (y_0 + 2y_1 + 2y_2 + 2y_3 + y_4)$$

$$= \frac{1/4}{2} \left(f\left(\frac{4}{4}\right) + 2f\left(\frac{5}{4}\right) + 2f\left(\frac{6}{4}\right) + 2f\left(\frac{7}{4}\right) + f\left(\frac{8}{4}\right) \right)$$

$$= \frac{1}{8} \left(\frac{16}{16} + 2\frac{25}{16} + 2\frac{36}{16} + 2\frac{49}{16} + \frac{64}{16}\right)$$

$$= \frac{1}{128} (16 + 50 + 72 + 98 + 64)$$

$$= \frac{1}{128} (300)$$

$$= \frac{75}{32}$$

$$\frac{75}{32} - \frac{7}{3} = \frac{225}{96} - \frac{224}{96} = \frac{1}{96}.$$

So the approximation overestimated the actual area by $\frac{1}{96}$, which is pretty good considering we only used 4 trapeziums.

Just like when we looked at Riemann sums, using more trapeziums results in a better approximation.

Parabolic Approximations: Instead of using the straight-line segments that produced the trapeziums, we can use parabolas to approximate the definite integral of a continuous function. We partition the interval [a, b] into n subintervals of equal length $\Delta x = \frac{b-a}{n}$ but this time we require n to be an even number. On each consecutive pair of intervals we approximate the curve $y = f(x) \ge 0$ by a parabola. A typical parabola passed through three consecutive points: $(x_{i-1}, y_{i-1}), (x_i, y_i)$ and (x_{i+1}, y_{i+1}) on the curve.

So how do we compute the area under each parabola $y = Ax^2 + Bx + C$? By translating we can assume that the centre point of our parabola is at $x_i = 0$

The area under the parabola and above the x-axis is given by

$$S_{i} = \int_{-\Delta x}^{\Delta x} Ax^{2} + Bx + C dx$$

$$= \frac{Ax^{3}}{3} + \frac{Bx^{2}}{2} + Cx \Big|_{-\Delta x}^{\Delta x}$$

$$= \frac{A(\Delta x)^{3}}{3} + \frac{B(\Delta x)^{2}}{2} + C(\Delta x) - \left[\frac{A(-\Delta x)^{3}}{3} + \frac{B(-\Delta x)^{2}}{2} + C(-\Delta x)\right]$$

$$= \frac{2A\Delta x^{3}}{3} + 2C\Delta x$$

$$= \frac{\Delta x}{3} (2A\Delta x + 6C)$$

$$(-\Delta x, y_{i-1})$$

$$(-\Delta x, y_{i-1})$$

$$(-\Delta x, y_{i-1})$$

$$y_{i-1} = A\Delta x^2 - B\Delta x + C$$

$$y_i = C$$

$$y_{i+1} = A\Delta x^2 + B\Delta x + C$$

$$\Rightarrow S_i = \frac{\Delta x}{3} (y_{i-1} + 4y_i + y_{i+1})$$

So if we sum up the areas under all of the parabolas, we obtain our approximation.

Simpson's Rule: To approximate $\int_a^b f(x) dx$, use

$$S = \frac{\Delta x}{3} \left(y_0 + 4y_1 + 2y_2 + 4y_3 + \dots + 2y_{n-2} + 4y_{n-1} + y_n \right)$$

= $\frac{\Delta x}{3} \left(f(x_0) + f(x_n) + 2 \left(\sum_{i=1}^{\frac{n-1}{2}} f(x_{2i-1}) + 2f(x_{2i}) \right) \right),$

where the y's are the values of f at the partition points

$$x_0 := a, \ x_1 := a + \Delta x, \ x_2 := a + 2\Delta x, \ \dots, \ x_{n-1} := a + (n-1)\Delta x, \ x_n := a + n\Delta x = b$$

and $\Delta x = \frac{b-a}{n}$ with *n* an *even* number.

Example 2: Use the Simpson's Rule with n = 4 to approximate $\int_0^2 5x^4 dx$. Compare the estimate with the exact value.

Partition the interval [1, 2] into 4 subintervals:

$$\Delta x = \frac{2-0}{4}$$

$$= \frac{1}{2}$$

$$x_{0} = a$$

$$x_{1} = a + \Delta x$$

$$x_{2} = a + 2\Delta x$$

$$x_{3} = a + 3\Delta x$$

$$x_{4} = a + 4\Delta x$$

$$= 0$$

$$= 0 + 1 \cdot \frac{1}{2}$$

$$= 0 + 2 \cdot \frac{1}{2}$$

$$= 0 + 3 \cdot \frac{1}{2}$$

$$= 0 + 4 \cdot \frac{1}{2}$$

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$

$$= \frac{2}{2}$$

$$= \frac{3}{2}$$

$$= \frac{4}{2}$$

Now use these points together with the formula for Simpson's Rule:

$$S = \frac{\Delta x}{3} (y_0 + 4y_1 + 2y_2 + 4y_3 + y_4)$$

$$= \frac{1/2}{3} \left(f\left(\frac{0}{2}\right) + 4f\left(\frac{1}{2}\right) + 2f\left(\frac{2}{2}\right) + 4f\left(\frac{3}{2}\right) + f\left(\frac{4}{2}\right) \right)$$

$$= \frac{1}{6} \left(5\frac{0}{16} + 4 \cdot 5\frac{1}{16} + 2 \cdot 5\frac{16}{16} + 4 \cdot 5\frac{81}{16} + 5\frac{128}{16} \right)$$

$$= \frac{5}{96} (0 + 4 + 32 + 324 + 256)$$

$$= \frac{5}{96} (616)$$

$$= \boxed{32}$$

$$\frac{385}{12} - 32 = \frac{385}{12} - \frac{384}{12} = \frac{1}{12}.$$

So the approximation overestimated the actual area by $\frac{1}{12}$, which is pretty good considering we only used 2 parabolas.

Just like Riemann sums and the Trapezium rule, using more parabolas results in a better approximation. In fact, of the three rules Simpson's Rule gives the best approximation. This can be seen by looking at the *error estimates*.

Error Estimates in the Trapezium and Simpson's Rules If f''(x) is continuous and M is any upper bound for the values of |f''(x)| on [a, b], then the error E_T in the Trapezium Rule for approximating the definite integral of f(x) over the interval [a, b] using n trapeziums satisfies the inequality

$$|E_T| \le \frac{M(b-a)^3}{12n^2}.$$

If $f^{(4)}(x)$ is continuous and M is any upper bound for the values of $|f^{(4)}(x)|$ on [a, b], then the error E_S in Simpson's Rule for approximating the definite integral of f(x) over the interval [a, b] using $\frac{n}{2}$ parabolas satisfies the inequality

$$|E_S| \le \frac{M(b-a)^5}{180n^4}$$

Example 3: Find an upper bound for the error in estimating $\int_0^2 5x^4 dx$ using Simpson's Rule with n = 4. What value of n should we pick so that the error is within 0.001 of the true value?

First we differentiate f(x) 4 times and check that it is continuous on the interval [0, 2].

$$f(x) = 5x^{4}$$

$$f'(x) = 20x^{3}$$

$$f''(x) = 60x^{2}$$

$$f'''(x) = 120x$$

$$^{(4)}(x) = 120$$

f

This is a constant function, so it *is* continuous on our interval. Further

$$|f^{(4)}(x)| = 120 \le 120$$
 for all $x \in [0, 2]$.

Thus M = 120 works as a bound. So, with n = 4, the error is bounded by:

$$|E_S| \le \frac{M(b-a)^5}{180n^4} = \frac{120(2-0)^5}{180(4)^4} = \frac{120 \cdot 2^5}{180 \cdot 2^8} = \frac{1}{3 \cdot 2^2} = \frac{1}{12}.$$

To achieve an approximation with $|E_S| \leq 0.001$, we again find a bound for M but this time we solve the inequality for n.

$$\frac{M(b-a)^5}{180n^4} = \frac{120(2-0)^5}{180n^4} = \frac{2^6}{3n^4} \le 0.001$$
$$\implies \qquad \frac{2^6}{3} \le \frac{1}{1000}n^4$$
$$\implies \qquad \frac{2^6 \cdot 1000}{3} \le n^4$$
$$\implies \qquad \frac{2^8 \cdot 2 \cdot 5^3}{3} \le n^4$$
$$\implies \qquad 4\sqrt[4]{\frac{2 \cdot 5^3}{3}} \le n$$

So setting $n \ge 4\sqrt[4]{\frac{2\cdot 5^3}{3}} \approx 12.086$ would ensure an approximation of the desired accuracy.