
Section 8.2: Techniques of Integration

A New Technique: Integration by parts is a technique used to simplify integrals of the form
ˆ
f(x)g(x) dx.

It is useful when one of the functions (f(x) or g(x)) can be differentiated repeatedly and the other function can be
integrated repeatedly without difficulty. The following are two such integrals:

ˆ
x cos(x) dx and

ˆ
x2ex dx.

Notice f(x) = x or f(x) = x2 can be differentiated repeatedly (they are even eventually zero) and g(x) = cos(x) and
g(x) = ex can be integrated repeatedly without difficulty.

An Application of the Product Rule: If f(x) and g(x) are differentiable functions of x, the product rule says that

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x).

Integrating both sides and rearranging gives us the Integration by Parts formula!

ˆ
d

dx
[f(x)g(x)] dx =

ˆ
f ′(x)g(x) dx+

ˆ
f(x)g′(x) dx

=⇒
ˆ
f(x)g′(x) dx =

ˆ
d

dx
[f(x)g(x)] dx−

ˆ
f ′(x)g(x) dx

=⇒
ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
f ′(x)g(x) dx

In differential form, let u = f(x) and v = g(x). Then,

Integration by Parts Formula:

ˆ
u dv = uv −

ˆ
v du.

Remember, all of the techniques that we talk about are supposed to make integrating easier! Even though this formula
expresses one integral in terms of a second integral, the idea is that the second integral,

´
v du, is easier to evaluate. The

key to integration by parts is making the right choice for u and v. Sometimes we may need to try multiple options before
we can apply the formula.
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Example 1: Find
ˆ
x cos(x) dx.

We have to decide what to assign to u and what to assign to dv. Our goal is to make the integral easier. One thing to bear
in mind is that whichever term we let equal u we need to differentiate - so if differentiating makes a part of the integrand
simpler that’s probably what we want! In this cases differentiating cos(x) gives − sin(x), which is no easier to deal with.
But differentiating x gives 1 which is simpler. So we have,

u = x dv = cos(x) dx

du = dx v = sin(x)

ˆ
x cos(x) dx = x sin(x)−

ˆ
sin(x) dx

= x sin(x) + cos(x) + C

Example 3 - Integration by Parts for Definite Integrals: Find the area of the region bounded by the curve y = xe−x

and the x-axis from x = 0 to x = 4.

4

A =
ˆ 4

0
xe−x dx

u = x dv = e−x dx

du = dx v = −e−x

ˆ 4

0
xe−x dx = −xe−x

∣∣∣∣∣
4

0

−
ˆ 4

0
−e−x dx

= −xe−x
∣∣∣∣∣
4

0

+
ˆ 4

0
e−x dx

=
(
−4e−4 − 0

)
− e−x

∣∣∣∣∣
4

0

= −4e−4 −
(
e−4 − 1

)
= −4e−4 −

(
e−4 − 1

)
= −5e−4 + 1
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Example 3: Evaluate
ˆ
x2ex dx.

Here we go through the same thought process. If u = ex then du = ex dx, which doesn’t make the problem any easier (though
it doesn’t make it any harder either). But in this case dv = x2 would give v = 1

3x
3 which arguably is not simpler that x2. So,

u = x2 dv = ex dx

du = 2x dx v = ex

ˆ
x2ex dx = x2ex − 2

ˆ
xex dx.

It’s at this point we see that we still cannot integrate the integral on the write easily. This is okay. Sometimes we may
have to apply the integration by parts formula more than once!

u = x dv = ex dx

du = dx v = ex

ˆ
x2ex dx = x2ex − 2

ˆ
xex dx

= x2ex − 2
[
xex −

ˆ
ex dx

]
= x2ex − 2xex + 2ex + C

=
(
x2 − 2x+ 2

)
ex + C

The previous technique works for any integral of the form
ˆ
xnemx dx, where n is any positive integer and m is any integer.

What if n was negative? Then this case we would set u = ex.

Example 4 - Tabular Method: In Example 2 we have to apply the Integration by Parts Formula multiple times. There
is a convenient way to “book-keep” our work. This is done by creating a table. Let’s see how by examining Example 2
again.
Evaluate

ˆ
x2ex dx.

Let f(x) = x2 and g(x) = ex. Then,

Differentiate f(x) Integrate g(x)

x2 ex

2x ex

2 ex

0 ex

+
−
+

Then the integral is,
ˆ
x2ex dx = +x2 · ex − 2x · ex + 2 · ex + C =

(
x2 − 2x+ 2

)
ex + C

We have actually used the integration by parts formula, but we have just made our lives easier by condensing the work into
a neat table. This method is extremely useful when Integration by Parts needs to be used over and over again.
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Example 5 - Recurring Integrals: Find the integral
ˆ
ex sin(x) dx.

We need to apply Integration by
Parts twice before we see something:

(1)

u = ex dv = sin(x)

du = ex dx v = − cos(x)

(2)

u = ex dv = cos(x)

du = ex dx v = sin(x)

ˆ
ex sin(x) dx = −ex cos(x) +

ˆ
ex cos(x) dx

= −ex cos(x) +
(
ex sin(x)−

ˆ
ex sin(x) dx

)
= −ex cos(x) + ex sin(x)−

ˆ
ex sin(x) dx

Notice that now the integral we are interested in,
ˆ
ex sin(x) dx, appears on both the

left and right hand side of the equation. So, if we add this integral to both sides we get

=⇒ 2
ˆ
ex sin(x) dx = ex (− cos(x) + sin(x))

=⇒
ˆ
ex sin(x) dx = ex (sin(x)− cos(x))

2

This “trick” comes up often when we are dealing with the product of two functions with “non-terminating” derivatives.
By this we mean that you can keep differentiating functions like ex and trig functions indefinitely and never reach 0.
Polynomials on the other hand will eventually “terminate” and their nth derivative (where n is the degree of the polynomial)
is identically 0.
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Example 6 - Challenge: Find the integral

1
π

ˆ π

0
x3 cos (nx) dx,

where n is a positive integer.
Let f(x) = x2 and g(x) = cos(nx). Then,

Differentiate f(x) Integrate g(x)

x3 cos(nx)
3x2 1

n sin(nx)
6x − 1

n2 cos(nx)
6 − 1

n3 sin(nx)
0 1

n4 cos(nx)

+
−
+
−

Then the integral is,

1
π

ˆ
x3 cos(nx) dx = 1

π

[
+x3 · 1

n
sin(nx)− 3x2 ·

(
− 1
n2

)
cos(nx) + 6x ·

(
− 1
n3

)
sin(nx)− 6 · 1

n4 cos(nx)
] ∣∣∣∣∣
π

0

= 1
π

[
x3

n
sin(nx) + 3x2

n2 cos(nx)− 6x
n3 sin(nx)− 6

n4 cos(nx)
] ∣∣∣∣∣
π

0

= 1
π

[(
0 + 3π2

n2 cos(nπ)− 0 + 6
n4

)
−

(
0 + 0− 0− 6

n4

)]
= 1
π

[
3π2(−1)n

n2 − 6(−1)n

n4 + 6
n4

]
= 3

π

π2n2(−1)n − 2(−1)n + 2
n4
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