Section 11.1: Parametrisations of Plane Curves

Parametric Equations: Below we have the path of a moving particle on the xy-plane. We can sometimes describe such a path by a pair of equations, x = f(t) and y = g(t), where f(t) and g(t) are continuous functions. Equations like these describe more general curves than those described by a single function, and they provide not only the graph of the path traced out but also the location of the particle (x, y) = (f(t), g(t)) at any time t.

Definitions: If x and y are given as functions

$$x = f(t) \quad y = g(t),$$

 over an interval I of t-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a ______parametric curve

 The equations are ______parametric equations ______for the curve.

 The variable t is the ______parameter ______for the curve and its domain I is the ______parameter interval ______.

 If I is a closed interval, $a \le t \le b$, the _______initial point ______ of the curve is the point (f(a), g(a)) and the _________ of the curve is (f(b), g(b)).

Example 1: Sketch the curve defined by the parametric equations

$$x = t^2$$
, $y = t + 1$, $-\infty < t < \infty$.

The i	(x, y)	coordinates	are de	termined	by	values	for a	t, 1	(t^2)	,t+	$\cdot 1$).
									•			

Here the arrows indicate the direction of travel.

Example 2: Identify geometrically the curve in Example 1 by eliminating the parameter t and obtaining an algebraic equation in x and y.

Since both x and y are defined in terms of t, we can use substitution to eliminate the parameter:

Option 1:Option 2:y = t + 1 $x = t^2$ $x = t^2$ y = t + 1 \Rightarrow y - 1 = t $x = (y - 1)^2$ \Rightarrow $\pm \sqrt{x} = t$ $y = \pm \sqrt{x} + 1$ \Rightarrow $x = y^2 - 2y + 1$ \Rightarrow $y = \sqrt{x} + 1, y = -\sqrt{x} + 1$

Example 3: Graph the parametric curves

(a) $x = \cos(t)$, $y = \sin(t)$, $0 \le t \le 2\pi$, (b) $x = a\cos(t)$, $y = a\sin(t)$, $0 \le t \le 2\pi$, $a \in \mathbb{R}$.

(a)

We see then that these parametric equations correspond to travelling around the unit circle anticlockwise. Algebraically we can verify this to see that

$$\cos^2(t) + \sin^2(t) = x^2 + y^2 = 1$$

which is precisely the equation for a circle of radius 1, centred at the origin.

(b) It should come at no surprise that these parametric equations correspond to travelling around the circle of radius *a*, centred at the origin, anticlockwise.

Example 4: The position P(x, y) of a particle moving in the xy-plane is given by the equations and parameter interval

$$x = \sqrt{t}, \quad y = t, \quad t \ge 0$$

Identify the path traced by the particle and describe the motion.

We can either find a table of values and plot or we can find a Cartesian equation. The latter is more straight forward and we see that $x = \sqrt{y}$ for $y \ge 0$ (or $y = x^2$ for $x \ge 0$). So the curve is the part of $y = x^2$ lying in the first quadrant of the *xy*-plane.

Example 5 - Natural Parametrisation: A parametrisation of the function $f(x) = x^2$ is given by

Let x = t. Then $y = x^2 = t^2$ and so the *natural parametrisation* of the curve $y = x^2$ is (t, t^2) where $-\infty < t < \infty$.

A Cartesian equation of the line through (a, b) with slope m is

$$y - b = m(x - a).$$

Let t = x - a. Then y - b = mt so y = mt + b. Therefore a parametrisation is

$$(x, y) = (t + a, mt + b), \quad -\infty < t < \infty.$$

It is important that the usage of the phrase "<u>a</u> parametrisation" is precise here since parametrisations are <u>not</u> unique. Here we could also use the *natural parametrisation* to obtain $(x, y) = (t, mt - (ma - b)), -\infty < t < \infty$.

Example 7: Sketch and identify the path traced by the point P(x, y) if

	1					
		<i>x</i>	$\frac{y}{2}$	10 -	t = 10	
	0.1	10.1	-9.9			
	0.2	5.2	-4.8			
	0.4	2.9	2.1			
	1	2	0			
	2	2.5	1.5			
	4	4.25	3.75		t = 4	
	10	10.1	9.9			
		I			t=2	
				,	1	
			2 A S	Ì	t = 1 10	
(1) $x + y$	$y = (t \cdot$	$+\frac{1}{t}) +$	$\left(t - \frac{1}{t}\right) = 2t$			
(2) $x = x$	u = (t)	+ <u>1</u>) _	$(t - \frac{1}{2}) - \frac{2}{2}$		t = 0.4	
(2) 2 8	9 - (0	' t)	$\begin{pmatrix} v & t \end{pmatrix} = t$			
(3) $x^2 - 3$	$y^2 = (x^2 + y^2)^2$	(x+y)(x)	$-y) = (2t)\left(\frac{2}{t}\right) = 4$		4 0.2	
					l = 0.2	
					×	
			2 2 4 1			
he Carte	sian eo	quation	$x^2 - y^2 = 4$ is the			
tandard f	form fo	r the e	quation of a hyper-	-10 -		1
-1-				4	t = 0.1	Ł.

$x = t + \frac{1}{t},$	$y = t - \frac{1}{t},$	t > 0.
------------------------	------------------------	--------

The Ca standar bola.

Section 11.2: Calculus with Parametric Equations

Tangents and Areas: A parametrised curve x = f(t) and y = g(t) is **differentiable** at t if f(t) and g(t) are differentiable at t. At a point on a differentiable parametrised curve where y is also a differentiable function of x, the derivatives dy/dt, dx/dt and dy/dx are related by the Chain Rule:

$$\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}.$$

If all three derivatives exist and $\frac{dx}{dt} \neq 0$, then

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}$$

Further we also have

$$\frac{d^2y}{dx^2} = \frac{d\frac{dy}{dx}/dt}{dx/dt}$$

Example 1: Find the tangent to the curve

$$x = \sec(t), \quad y = \tan(t), \quad -\frac{\pi}{2} < t < \frac{\pi}{2},$$

at the point $(\sqrt{2}, 1)$.

First we need to calculate the value of t at the point $(\sqrt{2}, 1)$. Since $\tan(x)$ is a one-to-one function on the parameter interval we see that

$$t=\tan^{-1}(1)=\frac{\pi}{4}$$

Using this we calculate the slope of the tangent line.

$$m = \frac{dy}{dx}\Big|_{t=\frac{\pi}{4}} = \frac{dy/dt}{dx/dt}\Big|_{t=\frac{\pi}{4}} = \frac{\sec^2(t)}{\sec(t)\tan(t)}\Big|_{t=\frac{\pi}{4}} = \frac{\sec(t)}{\tan(t)}\Big|_{t=\frac{\pi}{4}} = \frac{\sqrt{2}}{1} = \sqrt{2}$$

Thus the equation of the tangent line at the point $(\sqrt{2}, 1)$ is

$$y = \sqrt{2}(x - \sqrt{2}) + 1$$

1

Example 2: Find $\frac{d^2y}{dx^2}$ as a function of t if $x = t - t^2$ and $y = t - t^3$.

$$\frac{dx}{dt} = 1 - 2t \qquad \frac{dy}{dt} = 1 - 3t^2$$
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 - 3t^2}{1 - 2t}$$

$$\frac{d}{dt}\left(\frac{dy}{dt}\right) = \frac{d}{dt}\left(\frac{1-3t^2}{1-2t}\right)$$
$$= \frac{(1-2t)(-6t) - (1-3t^2)(-2)}{(1-2t)^2}$$
$$= \frac{-6t+12t^2+2-6t^2}{(1-2t)^2}$$
$$= \frac{2-6t+6t^2}{(1-2t)^2}$$

$$\frac{d^2y}{dx^2} = \frac{d\frac{dy}{dx}/dt}{dx/dt} = \boxed{\frac{2 - 6t + 6t^2}{(1 - 2t)^3}}$$

 $^{-1}$

 $^{-1}$

Example 3: Find the area enclosed by the astroid

 $x = \cos^3(t), \quad y = \sin^3(t), \quad 0 \le t \le 2\pi.$

The shape we are dealing with is symmetric, so the area we are interested in is four times the area beneath the curve in the first quadrant, corresponding to $0 \le t \le \frac{\pi}{2}$. We will apply the Fundamental Theorem of Calculus using substitution to express the curve y ad the differential dx in terms of t.

$$\begin{aligned} x &= \cos^{3}(t) \\ dx &= -3\cos^{2}(t)\sin(t) dt \\ dx &= -3\cos^{2}(t)\sin(t) dt \\ &= 12 \int_{0}^{\frac{\pi}{2}} \sin^{4}(t)\cos^{2}(t) dt \\ &= 12 \int_{0}^{\frac{\pi}{2}} \left(\frac{1-\cos(2t)}{2}\right)^{2} \left(\frac{1+\cos(2t)}{2}\right) dt \\ &= \frac{3}{2} \int_{0}^{\frac{\pi}{2}} (1-\cos(2t))^{2} (1+\cos(2t)) dt \\ &= \frac{3}{2} \int_{0}^{\frac{\pi}{2}} (1-\cos(2t))(1-\cos^{2}(2t)) dt \\ &= \frac{3}{2} \int_{0}^{\frac{\pi}{2}} \sin^{2}(2t) - \cos(2t)\sin^{2}(2t) dt \\ &= \frac{3}{2} \int_{0}^{\frac{\pi}{2}} \frac{1-\cos(4t)}{2} dt - \frac{3}{2} \int_{t=0}^{t=\frac{\pi}{2}} \frac{u^{2}}{2} du \\ &= \frac{3}{4} \left[t - \frac{1}{4}\sin(4t) \right]_{0}^{\frac{\pi}{2}} - \frac{3}{4} \left[\frac{u^{3}}{3} \right]_{t=0}^{t=\frac{\pi}{2}} \\ &= \frac{3\pi}{8} \end{aligned}$$

Length of a Parametrically Defined Curve: Let C be a curve given parametrically by the equations

$$x = f(t), \quad y = g(t), \quad a \le t \le b.$$

We assume the functions f(t) and g(t) are <u>continuously differentiable</u> on the interval [a, b]. We also assume that the derivatives f'(t) and g'(t) are not simultaneously zero, which prevents the curve C from having any corners or cusps.

Such a curve is called a <u>smooth curve</u>

The smooth curve C defined parametrically by the equations x = f(t) and y = g(t), $a \le t \le b$. The length of the curve from A to B is approximated by the sum of the lengths of the polygonal path (straight line segments) starting at $A = P_0$, then to P_1 and so on, ending at $B = P_n$.

The arc $P_{k-1}P_k$ is approximated by the straight line segment shown on the right, which has length

$$L_{k} = \sqrt{(\Delta x_{k})^{2} + (\Delta y_{k})^{2}} = \sqrt{[f(t_{k}) - f(t_{k-1})]^{2} + [g(t_{k}) - g(t_{k-1})]^{2}}$$

We know by the Mean Value Theorem there exist numbers t_k^\ast and $t_k^{\ast\ast}$ that satisfy

$$f'(t_k) = \frac{f(t_k) - f(t_{k-1})}{\Delta t_k}$$
 and $g'(t_k) = \frac{g(t_k) - g(t_{k-1})}{\Delta t_k}$,

thus the above becomes

$$L_k = \sqrt{[f'(t_k^*)]^2 + [g'(t_k^{**})]^2} \Delta t_k.$$

Summing up each line segment we obtain an approximation for the length L of the curve C;

$$L \approx \sum_{k=1}^{n} L_k = \sum_{k=1}^{n} \sqrt{[f'(t_k^*)]^2 + [g'(t_k^{**})]^2} \Delta t_k.$$

In an surprising turn of events, we obtain the exact value of L by taking a limit of this sum, resulting in a definite integral. To summarise:

Definition: If a curve C is defined parametrically by x = f(t) and y = g(t), $a \le t \le b$, where f'(t) and g'(t) are continuous and not simultaneously zero on [a, b] and C is traversed exactly once as t increases from t = a to t = b, the **length of** C is the definite integral

$$L = \int_{a}^{b} \sqrt{[f'(t)]^{2} + [g'(t)]^{2}} dt$$

Example 4: Using the definition, find the length of the circle of radius r defined parametrically by

$$x = r\cos(t), \quad y = r\sin(t), \quad 0 \le t \le 2\pi.$$

$$L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt$$
$$= \int_0^{2\pi} \sqrt{(-r\sin(t))^2 + (r\cos(t))^2} dt$$
$$= \int_0^{2\pi} \sqrt{r^2 (\sin^2(t) + \cos^2(t))} dt$$
$$= \int_0^{2\pi} \sqrt{r^2} dt$$
$$= \int_0^{2\pi} r dt = rt \Big|_0^{2\pi} = \boxed{2\pi r}$$

Example 5: Find the length of the astroid

$$x = \cos^3(t), \quad y = \sin^3(t), \quad 0 \le t \le 2\pi.$$

As in Example 3, the perimeter of the astroid is 4 times the length of the curve in the first quadrant.

$$\begin{aligned} \frac{dx}{dt} &= 3\cos^2(t)\sin(t) & L = 4\int_0^{\frac{\pi}{2}} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt \\ &= 4\int_0^{\frac{\pi}{2}} \sqrt{9\cos^4(t)\sin^2(t) + 9\sin^4(t)\cos^2(t)} dt \\ &= 4\int_0^{\frac{\pi}{2}} \sqrt{9\cos^2(t)\sin^2(t)\left(\cos^2(t) + \sin^2(t)\right)} dt \\ &= 4\int_0^{\frac{\pi}{2}} 3\cos(t)\sin(t) dt \\ &= 4\int_0^{\frac{\pi}{2}} 3\cos(t)\sin(t) dt \\ &= 12\int_{t=0}^{t=\frac{\pi}{2}} u \, du \\ &= 12\left[\frac{u^2}{2}\right]_{t=0}^{t=\frac{\pi}{2}} \\ &= 12\left[\frac{\sin^2(t)}{2}\right]_0^{\frac{\pi}{2}} \\ &= 12\left[\frac{1}{2} - 0\right] \\ &= 6\end{aligned}$$

Definition: If a smooth curve x = f(t), y = g(t), $a \le t \le b$ is traversed exactly once as t increases from a to b, then the surface area of the surface of revolution generated by revolving the curve about the coordinate axes are as follows.

1. Revolution about the x-axis $(y \ge 0)$:

$$S = \int_{a}^{b} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

2. Revolution about the *y*-axis $(x \ge 0)$:

$$S = \int_{a}^{b} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt$$

Example 6: The standard parametrisation of the circle of radius 1 centred at the point (0, 2) in the xy-plane is

$$x = \cos(t), \quad y = 2 + \sin(t), \quad 0 \le t \le 2\pi.$$

Use this parametrisation to find the surface area of the surface swept out by revolving the circle about the x-axis.

$$\begin{aligned} \frac{dx}{dt} &= -\sin(t) & S = \int_{a}^{b} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt \\ &= 2\pi \int_{0}^{2\pi} (2 + \sin(t)) \sqrt{(-\sin(t))^{2} + (\cos(t))} dt \\ &= 2\pi \int_{0}^{2\pi} 2 + \sin(t) dt \\ &= 2\pi [2t - \cos(t)]_{0}^{2\pi} \\ &= 2\pi [(4\pi - 1) - (0 - 1)] \\ &= 8\pi^{2} \end{aligned}$$

Section 11.3: Polar Coordinates

Definition: To define polar coordinates, we first fix an O (called the pole) and an

initial ray from O (usually the positive x-axis). Then each point P can be located by assigning to it a

<u>polar coordinate pair</u> (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to the ray OP.

Just like trigonometry, θ is positive when measured anticlockwise and negative when measured clockwise. The angle associated with a given point is <u>not unique</u>. In some cases, we allow r to be negative. For instance, the point $P(2, 7\pi/6)$ can be reached by turning $7\pi/6$ radians anticlockwise from the initial ray and going forward 2 units, or we could turn $\pi/6$ radians clockwise and go backwards 2 units; corresponding to $P(-2, \pi/6)$.

Example 1: Find all the polar coordinates of the point $P(2, \frac{\pi}{6})$.

Polar Equations and Graphs: If we fix r at a constant value (not equal to zero), the point $P(r, \theta)$ will lie |r| unites from the origin O. As θ varies over any interval of length 2π , P traces a what? A circle!

If we fix θ at a constant value and let r vary between $-\infty$ and ∞ , then the point $P(r, \theta)$ traces a what? A line!

Example 2: A circle or line can have more than one polar equation.

- (a) r = 1 and r = -1 are equations for a circle of radius 1 centred at the origin.
- (b) $\theta = \frac{\pi}{6}, \frac{7\pi}{6}, -\frac{5\pi}{6}, \dots$ are all equations for the line passing through the Cartesian points (0,0) and $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

Example 3: Equations of the form r = a and $\theta = \theta_0$ can be combined to define regions, segments and rays. Graph the sets of points whose polar coordinates satisfy the given conditions:

Relating Polar and Cartesian Coordinates: When we use both polar and Cartesian coordinates in a plane, we place the two origins together and take the initial ray as the positive x-axis. The ray $\theta = \pi/2$, r > 0 becomes the positive y-axis. The two coordinate systems are then related by the following:

 $x = r\cos(\theta), \quad y = r\sin(\theta), \quad r^2 = x^2 + y^2.$

Example 4: Given the polar equation, find the Cartesian equivalent:

(a) $r\cos(\theta) = 2$

(b) $r^2 \cos(\theta) \sin(\theta) = 4$

$$r\cos(\theta) \cdot r\sin(\theta) = 4 \Longrightarrow xy = 4$$

(c) $r^2 \cos^2(\theta) - r^2 \sin^2(\theta) = 1$

$$(r\cos(\theta))^2 - (r\sin(\theta))^2 = 1 \Longrightarrow \boxed{x^2 - y^2 = 1}$$

(d) $r = 1 + 2r\cos(\theta)$

$$r^{2} = (1 + 2r\cos(\theta))^{2} = 1 + 4r\cos(\theta) + 4(r\cos(\theta))^{2} \Longrightarrow x^{2} + y^{2} = 1 + 4x + 4x^{2}$$

(e) $r = 1 - \cos(\theta)$

$$r^{2} = (1 - \cos(\theta))r = r - r\cos(\theta) \Longrightarrow r^{2} + r\cos(\theta) = r$$
$$\Longrightarrow (r^{2} + r\cos(\theta))^{2} = r^{2}$$
$$\Longrightarrow \boxed{(x^{2} + y^{2} + x)^{2} = x^{2} + y^{2}}$$

Example 5: Find a polar equation for the circle $x^2 + (y-3)^2 = 9$.

$$x^{2} + y^{2} - 6y + 9 = 9 \Longrightarrow (x^{2} + y^{2}) - 6y = 0 \Longrightarrow r^{2} - 6r\sin(\theta) = 0$$

$$x = 2$$