Section 11.1: Parametrisations of Plane Curves

Parametric Equations: Below we have the path of a moving particle on the *xy*-plane. We can sometimes describe such a path by a pair of equations, $x = f(t)$ and $y = g(t)$, where $f(t)$ and $g(t)$ are continuous functions. Equations like these describe more general curves than those described by a single function, and they provide not only the graph of the path traced out but also the location of the particle $(x, y) = (f(t), g(t))$ at any time *t*.

Definitions: If *x* and *y* are given as functions

$$
x = f(t) \quad y = g(t),
$$

over an interval *I* of *t*-values, then the set of points $(x, y) = (f(t), g(t))$ defined by these equations is a parametric curve The equations are parametric equations for the curve. The variable t is the <u>parameter for the curve</u> and its domain I is the **parameter interval** If *I* is a closed interval, $a \le t \le b$, the initial point of the curve is the point $(f(a), g(a))$ and the terminal point of the curve is $(f(b), g(b))$.

Example 1: Sketch the curve defined by the parametric equations

$$
x = t^2, \quad y = t + 1, \quad -\infty < t < \infty.
$$

The (x, y) coordinates are determined by values for *t*, $(t^2, t+1)$.

Here the arrows indicate the direction of travel.

Example 2: Identify geometrically the curve in Example 1 by eliminating the parameter *t* and obtaining an algebraic equation in *x* and *y*.

Since both *x* and *y* are defined in terms of *t*, we can use substitution to eliminate the parameter:

Option 1: $y = t + 1$ $x = t^2$ \implies $y-1=t$ $x=(y-1)^2$ \implies $x = y^2 - 2y + 1$ Option 2: $x = t^2$ $y = t + 1$ $\pm\sqrt{x}=t$ $\overline{x} = t$ $y = \pm \sqrt{x} + 1$ \implies $|y=$ $\sqrt{x+1}$, $y= \sqrt{x+1}$

Example 3: Graph the parametric curves

(a)
$$
x = \cos(t)
$$
, $y = \sin(t)$, $0 \le t \le 2\pi$,
\n(b) $x = a\cos(t)$, $y = a\sin(t)$, $0 \le t \le 2\pi$, $a \in \mathbb{R}$.

(a)

We see then that these parametric equations correspond to travelling around the unit circle anticlockwise. Algebraically we can verify this to see that

$$
\cos^2(t) + \sin^2(t) = x^2 + y^2 = 1
$$

which is precisely the equation for a circle of radius 1, centred at the origin.

(b) It should come at no surprise that these parametric equations correspond to travelling around the circle of radius *a*, centred at the origin, anticlockwise.

Example 4: The position $P(x, y)$ of a particle moving in the xy-plane is given by the equations and parameter interval

$$
x = \sqrt{t}, \quad y = t, \quad t \ge 0.
$$

Identify the path traced by the particle and describe the motion.

We can either find a table of values and plot or we can find a Cartesian equation. The latter is more straight forward and we see that $x = \sqrt{y}$ for $y \ge 0$ (or $y = x^2$ for $x \ge 0$). So the curve is the part of $y = x^2$ lying in the first quadrant of the *xy*-plane.

Example 5 - Natural Parametrisation: A parametrisation of the function $f(x) = x^2$ is given by

Let $x = t$. Then $y = x^2 = t^2$ and so the *natural parametrisation* of the curve $y = x^2$ is (t, t^2) where $-\infty < t < \infty$.

Example 6: Find a parametrisation for the line through the point (a, b) having slope m.

A Cartesian equation of the line through (*a, b*) with slope *m* is

$$
y - b = m(x - a).
$$

Let $t = x - a$. Then $y - b = mt$ so $y = mt + b$. Therefore a parametrisation is

$$
(x, y) = (t + a, mt + b), \quad -\infty < t < \infty.
$$

It is important that the usage of the phrase "a parametrisation" is precise here since parametrisations are not unique. Here we could also use the *natural parametrisation* to obtain $(x, y) = (t, mt - (ma - b))$, $-\infty < t < \infty$.

Example 7: Sketch and identify the path traced by the point $P(x, y)$ if

$$
x = t + \frac{1}{t}, \quad y = t - \frac{1}{t}, \quad t > 0.
$$

Section 11.2: Calculus with Parametric Equations

Tangents and Areas: A parametrised curve $x = f(t)$ and $y = g(t)$ is **differentiable** at *t* if $f(t)$ and $g(t)$ are differentiable at *t*. At a point on a differentiable parametrised curve where *y* is also a differentiable function of *x*, the derivatives *dy/dt*, *dx/dt* and *dy/dx* are related by the Chain Rule:

$$
\frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt}.
$$

If all three derivatives exist and $\frac{dx}{dt} \neq 0$, then

$$
\frac{dy}{dx} = \frac{dy/dt}{dx/dt}.
$$

Further we also have

$$
\frac{d^2y}{dx^2} = \frac{d\frac{dy}{dx}/dt}{dx/dt}.
$$

Example 1: Find the tangent to the curve

$$
x = \sec(t)
$$
, $y = \tan(t)$, $-\frac{\pi}{2} < t < \frac{\pi}{2}$,

at the point (√ 2*,* 1).

First we need to calculate the value of *t* at the point (√ $(2, 1)$. Since $tan(x)$ is a one-to-one function on the parameter interval we see that

$$
t = \tan^{-1}(1) = \frac{\pi}{4}
$$

Using this we calculate the slope of the tangent line.

$$
m = \frac{dy}{dx}\Big|_{t=\frac{\pi}{4}} = \frac{dy/dt}{dx/dt}\Big|_{t=\frac{\pi}{4}} = \frac{\sec^2(t)}{\sec(t)\tan(t)}\Big|_{t=\frac{\pi}{4}} = \frac{\sec(t)}{\tan(t)}\Big|_{t=\frac{\pi}{4}} = \frac{\sqrt{2}}{1} = \sqrt{2}
$$

Thus the equation of the tangent line at the point (√ 2*,* 1) is

$$
y = \sqrt{2}(x - \sqrt{2}) + 1
$$

Example 2: Find $\frac{d^2y}{dx^2}$ $\frac{d^2y}{dx^2}$ as a function of *t* if $x = t - t^2$ and $y = t - t^3$.

$$
\frac{dx}{dt} = 1 - 2t \quad \frac{dy}{dt} = 1 - 3t^2
$$

$$
\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{1 - 3t^2}{1 - 2t}
$$

 $x =$

 $dx =$

 $u =$

$$
\frac{d}{dt}\left(\frac{dy}{dt}\right) = \frac{d}{dt}\left(\frac{1-3t^2}{1-2t}\right)
$$
\n
$$
= \frac{(1-2t)(-6t) - (1-3t^2)(-2)}{(1-2t)^2}
$$
\n
$$
= \frac{-6t + 12t^2 + 2 - 6t^2}{(1-2t)^2}
$$
\n
$$
= \frac{2 - 6t + 6t^2}{(1-2t)^2}
$$

$$
\frac{d^2y}{dx^2} = \frac{d\frac{dy}{dx}/dt}{dx/dt} = \boxed{\frac{2 - 6t + 6t^2}{(1 - 2t)^3}}
$$

 -1 1

1

Example 3: Find the area enclosed by the astroid

 $x = \cos^3(t)$, $y = \sin^3(t)$, $0 \le t \le 2\pi$.

The shape we are dealing with is symmetric, so the area we are interested in is four times the area beneath the curve in the first quadrant, corresponding to $0 \le t \le \frac{\pi}{2}$. We will apply the Fundamental Theorem of Calculus using substitution to express the curve *y* ad the differential *dx* in terms of *t*.

$$
x = \cos^{3}(t)
$$
\n
$$
A = 4 \int_{0}^{1} y(x) dx = 4 \int_{\frac{\pi}{2}}^{0} \sin^{3}(t) (-3 \cos^{2}(t) \sin(t)) dt
$$
\n
$$
= 12 \int_{0}^{\frac{\pi}{2}} \sin^{4}(t) \cos^{2}(t) dt
$$
\n
$$
= 12 \int_{0}^{\frac{\pi}{2}} \left(\frac{1 - \cos(2t)}{2}\right)^{2} \left(\frac{1 + \cos(2t)}{2}\right) dt
$$
\n
$$
= \frac{3}{2} \int_{0}^{\frac{\pi}{2}} (1 - \cos(2t))^{2} (1 + \cos(2t)) dt
$$
\n
$$
= \frac{3}{2} \int_{0}^{\frac{\pi}{2}} (1 - \cos(2t)) (1 - \cos^{2}(2t)) dt
$$
\n
$$
= \frac{3}{2} \int_{0}^{\frac{\pi}{2}} \sin^{2}(2t) - \cos(2t) \sin^{2}(2t) dt
$$
\n
$$
u = \sin(2t)
$$
\n
$$
du = 2 \cos(2t) dt
$$
\n
$$
= \frac{3}{4} \left[t - \frac{1}{4} \sin(4t) \right]_{0}^{\frac{\pi}{2}} - \frac{3}{4} \left[\frac{u^{3}}{3} \right]_{t=0}^{t=\frac{\pi}{2}}
$$
\n
$$
= \frac{3}{4} \left[t - \frac{1}{4} \sin(4t) - \frac{1}{3} \sin^{3}(2t) \right]_{0}^{\frac{\pi}{2}}
$$
\n
$$
= \frac{3\pi}{8}
$$

Length of a Parametrically Defined Curve: Let *C* be a curve given parametrically by the equations

$$
x = f(t), \quad y = g(t), \quad a \le t \le b.
$$

We assume the functions $f(t)$ and $g(t)$ are continuously differentiable on the interval $[a, b]$. We also assume that the derivatives $f'(t)$ and $g'(t)$ are not simultaneously zero, which prevents the curve C from having any corners or cusps.

Such a curve is called a <u>smooth curve</u>

The smooth curve *C* defined parametrically by the equations $x = f(t)$ and $y = g(t)$, $a \le t \le b$. The length of the curve from *A* to *B* is approximated by the sum of the lengths of the polygonal path (straight line segments) starting at $A = P_0$, then to P_1 and so on, ending at $B = P_n$.

The arc $P_{k-1}P_k$ is approximated by the straight line segment shown on the right, which has length

$$
L_k = \sqrt{(\Delta x_k)^2 + (\Delta y_k)^2} = \sqrt{[f(t_k) - f(t_{k-1})]^2 + [g(t_k) - g(t_{k-1})]^2}
$$

We know by the Mean Value Theorem there exist numbers t_k^* and t_k^{**} that satisfy

$$
f'(t_k) = \frac{f(t_k) - f(t_{k-1})}{\Delta t_k}
$$
 and $g'(t_k) = \frac{g(t_k) - g(t_{k-1})}{\Delta t_k}$,

thus the above becomes

$$
L_k = \sqrt{[f'(t_k^*)]^2 + [g'(t_k^{**})]^2} \Delta t_k.
$$

Summing up each line segment we obtain an approximation for the length *L* of the curve *C*;

$$
L \approx \sum_{k=1}^{n} L_k = \sum_{k=1}^{n} \sqrt{[f'(t_k^*)]^2 + [g'(t_k^{**})]^2} \Delta t_k.
$$

In an surprising turn of events, we obtain the exact value of L by taking a limit of this sum, resulting in a definite integral. To summarise:

Definition: If a curve C is defined parametrically by $x = f(t)$ and $y = g(t)$, $a \le t \le b$, where $f'(t)$ and $g'(t)$ are continuous and not simultaneously zero on $[a, b]$ and *C* is traversed exactly once as *t* increases from $t = a$ to $t = b$, the **length of** *C* is the definite integral

$$
L = \int_a^b \sqrt{[f'(t)]^2 + [g'(t)]^2} dt.
$$

Example 4: Using the definition, find the length of the circle of radius *r* defined parametrically by

$$
x = r\cos(t), \quad y = r\sin(t), \quad 0 \le t \le 2\pi.
$$

$$
L = \int_0^{2\pi} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt
$$

$$
\frac{dx}{dt} = -r \sin(t) = \int_0^{2\pi} \sqrt{(-r \sin(t))^2 + (r \cos(t))^2} dt
$$

$$
= \int_0^{2\pi} \sqrt{r^2 \left(\sin^2(t) + \cos^2(t)\right)} dt
$$

$$
\frac{dy}{dt} = r \cos(t)
$$

$$
= \int_0^{2\pi} \sqrt{r^2} dt
$$

$$
= \int_0^{2\pi} r dt = rt \Big|_0^{2\pi} = \boxed{2\pi r}
$$

Example 5: Find the length of the astroid

$$
x = \cos^3(t)
$$
, $y = \sin^3(t)$, $0 \le t \le 2\pi$.

As in Example 3, the perimeter of the astroid is 4 times the length of the curve in the first quadrant.

$$
\frac{dx}{dt} = 3\cos^2(t)\sin(t) \qquad L = 4\int_0^{\frac{\pi}{2}} \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt
$$

\n
$$
\frac{dy}{dt} = -3\cos^2(t)\sin(t) \qquad = 4\int_0^{\frac{\pi}{2}} \sqrt{9\cos^4(t)\sin^2(t) + 9\sin^4(t)\cos^2(t)} dt
$$

\n
$$
= 4\int_0^{\frac{\pi}{2}} \sqrt{9\cos^2(t)\sin^2(t)\left(\cos^2(t) + \sin^2(t)\right)} dt
$$

\n
$$
= 4\int_0^{\frac{\pi}{2}} 3\cos(t)\sin(t) dt
$$

\n
$$
u = \sin(t) \qquad = 12\int_{t=0}^{t=\frac{\pi}{2}} u du
$$

\n
$$
= 12\left[\frac{u^2}{2}\right]_{t=0}^{t=\frac{\pi}{2}}
$$

\n
$$
= 12\left[\frac{\sin^2(t)}{2}\right]_0^{\frac{\pi}{2}}
$$

\n
$$
= 12\left[\frac{1}{2} - 0\right]
$$

\n
$$
= \frac{16}{5}
$$

Definition: If a smooth curve $x = f(t)$, $y = g(t)$, $a \le t \le b$ is traversed exactly once as *t* increases from *a* to *b*, then the **surface area of the surface of revolution** generated by revolving the curve about the coordinate axes are as follows.

1. **Revolution about the** *x***-axis** ($y \ge 0$):

$$
S = \int_{a}^{b} 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt
$$

2. **Revolution about the** *y***-axis** $(x \geq 0)$:

$$
S = \int_{a}^{b} 2\pi x \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dy}{dt}\right)^{2}} dt
$$

Example 6: The standard parametrisation of the circle of radius 1 centred at the point $(0, 2)$ in the *xy*-plane is

$$
x = \cos(t),
$$
 $y = 2 + \sin(t),$ $0 \le t \le 2\pi.$

Use this parametrisation to find the surface area of the surface swept out by revolving the circle about the *x*-axis.

$$
\frac{dx}{dt} = -\sin(t) \qquad S = \int_a^b 2\pi y \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} dt
$$

$$
= 2\pi \int_0^{2\pi} (2 + \sin(t)) \sqrt{(-\sin(t))^2 + (\cos(t))} dt
$$

$$
= 2\pi \int_0^{2\pi} 2 + \sin(t) dt
$$

$$
= 2\pi [2t - \cos(t)]_0^{2\pi}
$$

$$
= 2\pi [(4\pi - 1) - (0 - 1)]
$$

$$
= 8\pi^2
$$

Section 11.3: Polar Coordinates

Definition: To define polar coordinates, we first fix an origin O (called the pole) and an

initial ray from O (usually the positive *x*-axis). Then each point P can be located by assigning to it a

polar coordinate pair (r, θ) in which *r* gives the directed distance from *O* to *P* and θ gives the directed angle from the initial ray to the ray *OP*.

Just like trigonometry, θ is positive when measured anticlockwise and negative when measured clockwise. The angle associated with a given point is not unique. In some cases, we allow *r* to be negative. For instance, the point $P(2, 7\pi/6)$ can be reached by turning $7\pi/6$ radians anticlockwise from the initial ray and going forward 2 units, or we could turn $\pi/6$ radians clockwise and go backwards 2 units; corresponding to $P(-2, \pi/6)$.

Example 1: Find all the polar coordinates of the point $P(2, \frac{\pi}{6})$.

Polar Equations and Graphs: If we fix *r* at a constant value (not equal to zero), the point $P(r, \theta)$ will lie |*r*| unites from the origin *O*. As θ varies over any interval of length 2π , *P* traces a what? A circle!

If we fix θ at a constant value and let *r* vary between $-\infty$ and ∞ , then the point $P(r, \theta)$ traces a what? A line!

Example 2: A circle or line can have more than one polar equation.

- (a) $r = 1$ and $r = -1$ are equations for a circle of radius 1 centred at the origin.
- (b) $\theta = \frac{\pi}{c}$ $\frac{\pi}{6}, \frac{7\pi}{6}$ $\frac{7\pi}{6}, -\frac{5\pi}{6}$ $\frac{6\pi}{6}$, ... are all equations for the line passing through the Cartesian points $(0,0)$ and $\left(\frac{\sqrt{3}}{2}\right)$ $\frac{\sqrt{3}}{2},\frac{1}{2}$ 2 .

Example 3: Equations of the form $r = a$ and $\theta = \theta_0$ can be combined to define regions, segments and rays. Graph the sets of points whose polar coordinates satisfy the given conditions:

Relating Polar and Cartesian Coordinates: When we use both polar and Cartesian coordinates in a plane, we place the two origins together and take the initial ray as the positive *x*-axis. The ray $\theta = \pi/2$, $r > 0$ becomes the positive *y*-axis. The two coordinate systems are then related by the following:

 $x = r \cos(\theta)$, $y = r \sin(\theta)$, $r^2 = x^2 + y^2$.

Example 4: Given the polar equation, find the Cartesian equivalent:

(a) $r \cos(\theta) = 2$

(b) $r^2 \cos(\theta) \sin(\theta) = 4$

$$
r\cos(\theta) \cdot r\sin(\theta) = 4 \Longrightarrow \boxed{xy = 4}
$$

(c) $r^2 \cos^2(\theta) - r^2 \sin^2(\theta) = 1$

$$
(r\cos(\theta))^{2} - (r\sin(\theta))^{2} = 1 \Longrightarrow \boxed{x^{2} - y^{2} = 1}
$$

(d) $r = 1 + 2r \cos(\theta)$

$$
r^{2} = (1 + 2r\cos(\theta))^{2} = 1 + 4r\cos(\theta) + 4(r\cos(\theta))^{2} \Longrightarrow x^{2} + y^{2} = 1 + 4x + 4x^{2}
$$

(e) $r = 1 - \cos(\theta)$

$$
r^{2} = (1 - \cos(\theta)) r = r - r \cos(\theta) \Longrightarrow r^{2} + r \cos(\theta) = r
$$

$$
\Longrightarrow (r^{2} + r \cos(\theta))^{2} = r^{2}
$$

$$
\Longrightarrow (x^{2} + y^{2} + x)^{2} = x^{2} + y^{2}
$$

Example 5: Find a polar equation for the circle $x^2 + (y-3)^2 = 9$.

$$
x^{2} + y^{2} - 6y + 9 = 9 \Longrightarrow (x^{2} + y^{2}) - 6y = 0 \Longrightarrow \boxed{r^{2} - 6r\sin(\theta) = 0}
$$

$$
x = 2
$$