Section 11.3: Polar Coordinates

Definition: To define polar coordinates, we first fix an \qquad origin O (called the \qquad) and an
initial ray from O (usually the positive x-axis). Then each point P can be located by assigning to it a
polar coordinate pair (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to the ray $O P$.

Just like trigonometry, θ is positive when measured anticlockwise and negative when measured clockwise. The angle associated with a given point is not unique.
In some cases, we allow r to be negative. For instance, the point $P(2,7 \pi / 6)$ can be reached by turning $7 \pi / 6$ radians anticlockwise from the initial ray and going forward 2 units, or we could turn $\pi / 6$ radians clockwise and go backwards 2 units; corresponding to $P(-2, \pi / 6)$.

Example 1: Find all the polar coordinates of the point $P\left(2, \frac{\pi}{6}\right)$.

So,

$$
\left\{\left(2, \frac{\pi}{6}+2 n \pi\right), \left.\left(-2,-\frac{5 \pi}{6}+2 n \pi\right) \right\rvert\, n \in \mathbb{Z}\right\}
$$

Polar Equations and Graphs: If we fix r at a constant value (not equal to zero), the point $P(r, \theta)$ will lie $|r|$ unites from the origin O. As θ varies over any interval of length $2 \pi, P$ traces a what? A circle!

If we fix θ at a constant value and let r vary between $-\infty$ and ∞, then the point $P(r, \theta)$ traces a what? A line!

Example 2: A circle or line can have more than one polar equation.
(a) $r=1$ and $r=-1$ are equations for a circle of radius 1 centred at the origin.
(b) $\theta=\frac{\pi}{6}, \frac{7 \pi}{6},-\frac{5 \pi}{6}, \ldots$ are all equations for the line passing through the Cartesian points $(0,0)$ and $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

Example 3: Equations of the form $r=a$ and $\theta=\theta_{0}$ can be combined to define regions, segments and rays. Graph the sets of points whose polar coordinates satisfy the given conditions:
(a) $1 \leq r \leq 2$ and $0 \leq \theta \leq \frac{\pi}{2}$

(b) $-3 \leq r \leq 2$ and $\theta=\frac{\pi}{4}$

(c) $\frac{2 \pi}{3} \leq \theta \leq \frac{5 \pi}{6}$

Relating Polar and Cartesian Coordinates: When we use both polar and Cartesian coordinates in a plane, we place the two origins together and take the initial ray as the positive x-axis. The ray $\theta=\pi / 2, r>0$ becomes the positive y-axis. The two coordinate systems are then related by the following:

$$
x=r \cos (\theta), \quad y=r \sin (\theta), \quad r^{2}=x^{2}+y^{2}
$$

Example 4: Given the polar equation, find the Cartesian equivalent:
(a) $r \cos (\theta)=2$

$$
x=2
$$

(b) $r^{2} \cos (\theta) \sin (\theta)=4$

$$
r \cos (\theta) \cdot r \sin (\theta)=4 \Longrightarrow x y=4
$$

(c) $r^{2} \cos ^{2}(\theta)-r^{2} \sin ^{2}(\theta)=1$

$$
(r \cos (\theta))^{2}-(r \sin (\theta))^{2}=1 \Longrightarrow x^{2}-y^{2}=1
$$

(d) $r=1+2 r \cos (\theta)$

$$
r^{2}=(1+2 r \cos (\theta))^{2}=1+4 r \cos (\theta)+4(r \cos (\theta))^{2} \Longrightarrow x^{2}+y^{2}=1+4 x+4 x^{2}
$$

(e) $r=1-\cos (\theta)$

$$
\begin{aligned}
r^{2}=(1-\cos (\theta)) r=r-r \cos (\theta) & \Longrightarrow r^{2}+r \cos (\theta)=r \\
& \Longrightarrow\left(r^{2}+r \cos (\theta)\right)^{2}=r^{2} \\
& \Longrightarrow\left(x^{2}+y^{2}+x\right)^{2}=x^{2}+y^{2}
\end{aligned}
$$

Example 5: Find a polar equation for the circle $x^{2}+(y-3)^{2}=9$.

$$
x^{2}+y^{2}-6 y+9=9 \Longrightarrow\left(x^{2}+y^{2}\right)-6 y=0 \Longrightarrow r^{2}-6 r \sin (\theta)=0
$$

