Section 11.3: Polar Coordinates

Definition: To define polar coordinates, we first fix an O (called the pole) and an

initial ray from O (usually the positive x-axis). Then each point P can be located by assigning to it a

<u>polar coordinate pair</u> (r, θ) in which r gives the directed distance from O to P and θ gives the directed angle from the initial ray to the ray OP.

Just like trigonometry, θ is positive when measured anticlockwise and negative when measured clockwise. The angle associated with a given point is <u>not unique</u>. In some cases, we allow r to be negative. For instance, the point $P(2, 7\pi/6)$ can be reached by turning $7\pi/6$ radians anticlockwise from the initial ray and going forward 2 units, or we could turn $\pi/6$ radians clockwise and go backwards 2 units; corresponding to $P(-2, \pi/6)$.

Example 1: Find all the polar coordinates of the point $P(2, \frac{\pi}{6})$.

Polar Equations and Graphs: If we fix r at a constant value (not equal to zero), the point $P(r, \theta)$ will lie |r| unites from the origin O. As θ varies over any interval of length 2π , P traces a what? A circle!

If we fix θ at a constant value and let r vary between $-\infty$ and ∞ , then the point $P(r, \theta)$ traces a what? A line!

Example 2: A circle or line can have more than one polar equation.

- (a) r = 1 and r = -1 are equations for a circle of radius 1 centred at the origin.
- (b) $\theta = \frac{\pi}{6}, \frac{7\pi}{6}, -\frac{5\pi}{6}, \dots$ are all equations for the line passing through the Cartesian points (0,0) and $\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$.

Example 3: Equations of the form r = a and $\theta = \theta_0$ can be combined to define regions, segments and rays. Graph the sets of points whose polar coordinates satisfy the given conditions:

Relating Polar and Cartesian Coordinates: When we use both polar and Cartesian coordinates in a plane, we place the two origins together and take the initial ray as the positive x-axis. The ray $\theta = \pi/2$, r > 0 becomes the positive y-axis. The two coordinate systems are then related by the following:

 $x = r\cos(\theta), \quad y = r\sin(\theta), \quad r^2 = x^2 + y^2.$

Example 4: Given the polar equation, find the Cartesian equivalent:

(a) $r\cos(\theta) = 2$

(b) $r^2 \cos(\theta) \sin(\theta) = 4$

$$r\cos(\theta) \cdot r\sin(\theta) = 4 \Longrightarrow xy = 4$$

(c) $r^2 \cos^2(\theta) - r^2 \sin^2(\theta) = 1$

$$(r\cos(\theta))^2 - (r\sin(\theta))^2 = 1 \Longrightarrow \boxed{x^2 - y^2 = 1}$$

(d) $r = 1 + 2r\cos(\theta)$

$$r^{2} = (1 + 2r\cos(\theta))^{2} = 1 + 4r\cos(\theta) + 4(r\cos(\theta))^{2} \Longrightarrow x^{2} + y^{2} = 1 + 4x + 4x^{2}$$

(e) $r = 1 - \cos(\theta)$

$$r^{2} = (1 - \cos(\theta))r = r - r\cos(\theta) \Longrightarrow r^{2} + r\cos(\theta) = r$$
$$\Longrightarrow (r^{2} + r\cos(\theta))^{2} = r^{2}$$
$$\Longrightarrow \boxed{(x^{2} + y^{2} + x)^{2} = x^{2} + y^{2}}$$

Example 5: Find a polar equation for the circle $x^2 + (y-3)^2 = 9$.

$$x^{2} + y^{2} - 6y + 9 = 9 \Longrightarrow (x^{2} + y^{2}) - 6y = 0 \Longrightarrow r^{2} - 6r\sin(\theta) = 0$$

$$x = 2$$

$$\left(r\cos(\theta)\right)^2 - \left(r\sin(\theta)\right)^2 = 1 \Longrightarrow x^2 - y^2 = 1$$