Section 11.2: Calculus with Parametric

Equations

Tangents and Areas: A parametrised curve z = f(¢) and y = g(t) is differentiable at ¢ if f(¢) and g(t) are differentiable
at t. At a point on a differentiable parametrised curve where y is also a differentiable function of x, the derivatives dy/dt,

dz/dt and dy/dz are related by the Chain Rule:

dy _dy do
dt  dz dt’
o . dx
If all three derivatives exist and p = 0, then
dy  dy/dt
de  dx/dt’

Further we also have

Py _ A% /dt
dz?  dx/dt’

Example 1: Find the tangent to the curve

x =sec(t), y=tan(t), fg<t<g,

at the point (v/2,1).

First we need to calculate the value of ¢ at the point (1/2,1). Since tan(z) is a one-to-one function on the parameter

interval we see that

™
t=tan"'(1) = —
an~ (1) 1

Using this we calculate the slope of the tangent line.

_dy _dy/dt sec?(t) sec(t) V2 V3

" t==  dx/dtli=z  sec(t)tan(t)li=z  tan(t)l=z 1

4

Thus the equation of the tangent line at the point (v/2,1) is

y=V2(x-v2)+1 (v2,1)
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Example 2: Find d—y as a function of t if x =t —t? and y = t — ¢3.

.732
4 () _d (1o
dt \ dt dt — 2t
_ (-

)(—Gt) — (1-3t%)(=2)

(1—2t)2
%:17215 %:1—3# =6t 41262 + 2 — 6t
(1—2t)2
2 — 6t + 61
dy dy/dt 1-3t? T 22

de  dx/dt  1—2t

d?y  d@E/dt |2 6t+ 6t
de?  dx/dt | (1-2t)3

Example 3: Find the area enclosed by the astroid
r=cos®(t), y=sin®t), 0<t<2m

The shape we are dealing with is symmetric, so the area we are interested in
is four times the area beneath the curve in the first quadrant, corresponding
to 0 <t < 5. We will apply the Fundamental Theorem of Calculus using

substitution to express the curve y ad the differential dz in terms of .

1 0
x = cos® = x)dr = sin®(t) (=3 cos?(t) sin
0 A= [ yta)dn=a [ () (<Beost(t)sin(0) a

dx = —3cos®(t)sin(t) dt B
= / sin? (t) cos?(t) dt
0

2/05 (1—cos 2t)>2<1+c;)s(2t)> i

[N

I
—

~
\

3 :l
- 5/02 (1 — cos(2t))? (1 + cos(2t)) dt
3 (2
= 5/ (1 —cos(2t)) (1 — cos®(2t)) dt
0
3 [z
=3 / sin?(2t) — cos(2t) sin?(2t) dt
0
u = sin(2t) _ 3/72r 1 — cos(4t) g 3/1‘/_72r ﬁdu
du = 2 cos(2t) dt 2 Jo 2 2 Ji=o 2
3 =3
4
3
4
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Length of a Parametrically Defined Curve: Let C be a curve given parametrically by the equations
z=f(t), y=g(t), a<t<b

We assume the functions f(¢) and g(t) are continuously differentiable on the interval [a, b]. We also assume

that the derivatives f'(¢) and ¢’(¢) are not simultaneously zero, which prevents the curve C from having any corners or cusps.

Such a curve is called a smooth curve

Pr = (f(tr),9(tr))

The smooth curve C' defined parametrically by the equations z = f(¢) and y = g(t), a <t < b. The length of the curve
from A to B is approximated by the sum of the lengths of the polygonal path (straight line segments) starting at A = Py,
then to P, and so on, ending at B = P,.

The arc P_1P; is approximated by the straight line segment shown on the right, which has length

Ly, = \/ (Azy)* + (Aye)® = \/ [f(te) = F(te—))* + [g(tx) — g(ts—1)]?
We know by the Mean Value Theorem there exist numbers ¢; and ¢;* that satisfy

ftr) — ftk—1)
Aty

9(tx) — g(te—1)

f/(tk) = Atk )

and ¢/ (t) =

thus the above becomes

L = /[ G012 + o/ ()12 A

Summing up each line segment we obtain an approximation for the length L of the curve C

L3 Lo =301 )2 + o () 200,
k=1 k=1

In an surprising turn of events, we obtain the exact value of L by taking a limit of this sum, resulting in a definite integral.

To summarise:

Definition: If a curve C is defined parametrically by = = f(t) and y = g(¢), a <t < b, where f/(¢) and ¢'(t) are continuous
and not simultaneously zero on [a, b] and C is traversed exactly once as ¢ increases from t = a to t = b, the length of C is

the definite integral

b
L= / VIFOR + g dt.
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Example 4: Using the definition, find the length of the circle of radius r defined parametrically by

x=rcos(t), y=rsin(), 0<t<2rm.

[V
T

dzx : = —rsin(t))2 + (rcos(t))?
priaia sin(t) ; ( () +( (t))*dt
2m
- / \/T‘2 (sin®(t) + cos?(t)) dt
W reos(t o
at ~ O = [ VrZdt
0

2 T
:/Trrdt:rt‘z :
0

Example 5: Find the length of the astroid
x=cos(t), y=sin®(t), 0<t<2m.
As in Example 3, the perimeter of the astroid is 4 times the length of the curve in the first quadrant.

dx _ 9 . B z da\? dy 2
i 3 cos*(t) sin(t) L= 4/0 \/(dt) + (dt dt

d ) Bl
cTi = —3cos?(t) sin(t) = 4/ \/9 cos(t) sin?(t) + 9 sin(t) cos?(t) dt
0

4/0.5 \/9 cos?(t) sin?(t) (cos?(t) + sin®(t)) dt

[ME]

= 4/0 3cos(t)sin(t) dt

u = sin(t) t=%
= 12/ wdu
du = cos(t) dt t=0

r,21=%
—12 “]
L2 1o

. [sin? t)} 2

1
=12|= —
b

(5]

Page 4 of



Section 11.2: Calculus with Parametric Equations MATH 142

Definition: If a smooth curve x = f(t), y = g(t), a <t < b is traversed exactly once as ¢ increases from a to b, then the

surface area of the surface of revolution generated by revolving the curve about the coordinate axes are as follows.

1. Revolution about the z-axis (y > 0):

b 2 2
dx dy
= — —= | dt

2. Revolution about the y-axis (z > 0):

b 2 2
_ dx dy
S —/a 27mc\/<dt> + (dt) dt

Example 6: The standard parametrisation of the circle of radius 1 centred at the point (0,2) in the xy-plane is

x=cos(t), y=2+sin(t), 0<t<2m.

Use this parametrisation to find the surface area of the surface swept out by revolving the circle about the z-axis.

dx . b dr\? dy 2
i —sin(t) S—/a 27ry\/<dt) + (dt) dt

d 2m
d—‘:{ = cos(t) = 27r/0 2+ sin(t))\/(— sin(t))® + (cos(t)) dt

2m
= 277/ 2 + sin(t) dt
0

=2 [2t — cos(t)]7"

= 2r[(4m — 1) — (0 — 1)]

=87
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