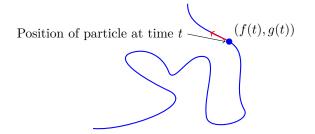
Section 11.1: Parametrisations of Plane Curves

Parametric Equations: Below we have the path of a moving particle on the xy-plane. We can sometimes describe such a path by a pair of equations, x = f(t) and y = g(t), where f(t) and g(t) are continuous functions. Equations like these describe more general curves than those described by a single function, and they provide not only the graph of the path traced out but also the location of the particle (x, y) = (f(t), g(t)) at any time t.



Definitions: If x and y are given as functions

$$x = f(t) \quad y = g(t),$$

over an interval I of t-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a

The equations are ______ for the curve.

The variable t is the ______ for the curve and its domain I is the ______.

If I is a closed interval, $a \le t \le b$, the ______ of the curve is the point (f(a), g(a)) and the

_____ of the curve is (f(b), g(b)).

Example 1: Sketch the curve defined by the parametric equations

 $x = t^2, \quad y = t + 1, \quad -\infty < t < \infty.$

Example 2: Identify geometrically the curve in Example 1 by eliminating the parameter t and obtaining an algebraic equation in x and y.

Example 3: Graph the parametric curves

(a) $x = \cos(t)$, $y = \sin(t)$, $0 \le t \le 2\pi$, (b) $x = a\cos(t)$, $y = a\sin(t)$, $0 \le t \le 2\pi$, $a \in \mathbb{R}$. **Example 4**: The position P(x, y) of a particle moving in the xy-plane is given by the equations and parameter interval

$$x = \sqrt{t}, \quad y = t, \quad t \ge 0.$$

Identify the path traced by the particle and describe the motion.

Example 5 - Natural Parametrisation: A parametrisation of the function $f(x) = x^2$ is given by

Example 6: Find a parametrisation for the line through the point (a, b) having slope m.

Example 7: Sketch and identify the path traced by the point P(x, y) if

$$x = t + \frac{1}{t}, \quad y = t - \frac{1}{t}, \quad t > 0.$$