Section 11.1: Parametrisations of Plane

Curves

Parametric Equations: Below we have the path of a moving particle on the xy-plane. We can sometimes describe such
a path by a pair of equations, z = f(¢t) and y = ¢(¢), where f(¢) and g(¢) are continuous functions. Equations like these
describe more general curves than those described by a single function, and they provide not only the graph of the path

traced out but also the location of the particle (z,y) = (f(¢), g(t)) at any time ¢.

Position of particle at time ¢

Definitions: If z and y are given as functions

over an interval I of t-values, then the set of points (z,y) = (f(¢), g(¢)) defined by these equations is a

The equations are for the curve.
The variable t is the for the curve and its domain I is the
If I is a closed interval, a <t < b, the of the curve is the point (f(a), g(a)) and the

of the curve is (f(b), g(b)).

Example 1: Sketch the curve defined by the parametric equations

r=t2, y=t+1, —oo<t<oo.



Section 11.1: Parametrisations of Plane Curves

MATH 142

Example 2: Identify geometrically the curve in Example 1 by eliminating the parameter ¢t and obtaining an algebraic

equation in x and y.

Example 3: Graph the parametric curves
(a) x = cos(t), y = sin(t), 0<t<2m,

(b) x =acos(t), y=uasin(t), 0<t< 2,

a € R.
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Example 4: The position P(xz,y) of a particle moving in the xzy-plane is given by the equations and parameter interval
r=+Vt, y=t, t>0.

Identify the path traced by the particle and describe the motion.

Example 5 - Natural Parametrisation: A parametrisation of the function f(z) = 22 is given by

Example 6: Find a parametrisation for the line through the point (a,b) having slope m.
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Example 7: Sketch and identify the path traced by the point P(x,y) if

——t—i-l ——t—l t>0
z Z Z )
Py Yy £
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Equations

Tangents and Areas: A parametrised curve z = f(¢) and y = g(t) is differentiable at ¢ if f(¢) and g(t) are differentiable

at t. At a point on a differentiable parametrised curve where y is also a differentiable function of x, the derivatives dy/dt,

dx/dt and dy/dx are related by the Chain Rule:

dy _dy do
dt  dz dt’
o . dx
If all three derivatives exist and p = 0, then
dy  dy/dt
de  dx/dt’

Further we also have

Py _ A% /dt
dz?  dx/dt’

Example 1: Find the tangent to the curve

x =sec(t), y=tan(t), fg<t<f,

at the point (v/2,1).
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2

Example 2: Find d—z as a function of t if x =t —t? and y = t — ¢3.
x

Example 3: Find the area enclosed by the astroid

x=cos®(t), y=sin®(t), 0<t<2m.
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Length of a Parametrically Defined Curve: Let C be a curve given parametrically by the equations
z=f(t), y=g(t), a<t<b

We assume the functions f(¢) and g(t) are on the interval [a, b]. We also assume

that the derivatives f'(¢) and ¢’(¢) are not simultaneously zero, which prevents the curve C from having any corners or cusps.

Such a curve is called a

Pr = (f(tr),9(tr))

The smooth curve C' defined parametrically by the equations z = f(¢) and y = g(t), a <t < b. The length of the curve
from A to B is approximated by the sum of the lengths of the polygonal path (straight line segments) starting at A = Py,
then to P, and so on, ending at B = P,.

The arc P_1P; is approximated by the straight line segment shown on the right, which has length

Ly, = \/ (Azy)* + (Aye)® = \/ [f(te) = F(te—))* + [g(tx) — g(ts—1)]?
We know by the Mean Value Theorem there exist numbers ¢; and ¢;* that satisfy

ftr) — ftk—1)
Aty

9(tx) — g(te—1)

f/(tk) = Atk )

and ¢/ (t) =

thus the above becomes

L = /[ G012 + o/ ()12 A

Summing up each line segment we obtain an approximation for the length L of the curve C

L3 Lo =301 )2 + o () 200,
k=1 k=1

In an surprising turn of events, we obtain the exact value of L by taking a limit of this sum, resulting in a definite integral.

To summarise:

Definition: If a curve C is defined parametrically by = = f(t) and y = g(¢), a <t < b, where f/(¢) and ¢'(t) are continuous
and not simultaneously zero on [a, b] and C is traversed exactly once as ¢ increases from t = a to t = b, the length of C is

the definite integral

b
L= / VIFOR + g dt.
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Example 4: Using the definition, find the length of the circle of radius r defined parametrically by

x=rcos(t), y=rsin(), 0<t<2rm.

Example 5: Find the length of the astroid

r=cos®(t), y=sin(t), 0<t<2m.
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Definition: If a smooth curve x = f(t), y = g(t), a <t < b is traversed exactly once as ¢ increases from a to b, then the

surface area of the surface of revolution generated by revolving the curve about the coordinate axes are as follows.

1. Revolution about the z-axis (y > 0):

2. Revolution about the y-axis (z > 0):

b 2 2
_ dx dy
S —/a 27mc\/<dt> + (dt) dt

Example 6: The standard parametrisation of the circle of radius 1 centred at the point (0,2) in the xy-plane is

x=cos(t), y=2+sin(t), 0<t<2m.

Use this parametrisation to find the surface area of the surface swept out by revolving the circle about the z-axis.
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Definition: To define polar coordinates, we first fix an O (called the ) and an

from O (usually the positive z-axis). Then each point P can be located by assigning to it a

(r,0) in which r gives the directed distance from O to P and 6 gives the directed

angle from the initial ray to the ray OP.

P(r,0
(r,6) Just like trigonometry, 6 is positive when measured anticlockwise and negative when

measured clockwise. The angle associated with a given point is not unique.

In some cases, we allow r to be negative. For instance, the point P(2,77/6) can be
reached by turning 77 /6 radians anticlockwise from the initial ray and going forward 2
0 units, or we could turn /6 radians clockwise and go backwards 2 units; corresponding
0 r to P(—2,7/6).

Example 1: Find all the polar coordinates of the point P(2, ¥).

Polar Equations and Graphs: If we fix r at a constant value (not equal to
zero), the point P(r,#) will lie |r| unites from the origin O. As 0 varies over any

interval of length 27, P traces a what?

If we fix 6 at a constant value and let r vary between —oo and oo, then the

point P(r,#) traces a what?
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Example 2: A circle or line can have more than one polar equation.

Example 3: Equations of the form r = a and 8 = 6y can be combined to define regions, segments and rays. Graph the

sets of points whose polar coordinates satisfy the given conditions:

(a) 1§T§2and0§9§g

(b) 73§7’§2and9:g
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Relating Polar and Cartesian Coordinates: When we use both polar and Cartesian coordinates in a plane, we place
the two origins together and take the initial ray as the positive z-axis. The ray 6§ = 7/2, r > 0 becomes the positive y-axis.

The two coordinate systems are then related by the following:

Example 4: Given the polar equation, find the Cartesian equivalent:

(a) rcos(f) =2

(b) 72 cos(f)sin(0) = 4

(c) r2cos?(f) — r?sin?(f) =1

(d) =1+ 2rcos(h)

(e) r=1—cos(h)

Example 5: Find a polar equation for the circle 22 + (y — 3)? = 9.
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