
Section 10.9: Convergence of Taylor Series

Taylors Theorem: In the last section, we asked when a Taylor Series for a function can be expected to that (generating)
function. That question is answered by the following theorem:

If f(x) and its first n derivatives f ′(x), f ′′(x), . . . , f (n)(x) are continuous on the closed interval between a and b, and
f (n)(x) is differentiable on the open interval between a and b, then there exists a number c between a and b such that

f(b) = f(a) + f ′(a)(b− a) + f ′′(a)
2! (b− a)2 + · · ·+ f (n)(a)

n! (b− a)n + f (n+1)(c)
(n + 1)! (b− a)n+1.

Interesting Fact: Taylor’s Theorem is a generalisation of the Mean Value Theorem!

Taylor’s Formula: If f(x) has derivatives of all orders in a n open interval I containing a, then for each positive integer
n and for each x ∈ I,

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n + Rn(x),

where

Rn(x) = f (n+1)(c)
(n + 1)! (x− a)n+1

for some c between a and x.

Stating Taylor’s Theorem in this way says that for each x ∈ I,

f(x) = Pn(x) + Rn(x),

where the function Rn(x) is determined by the value of the (n + 1)st derivative f (n+1)(x) at a point c that depends on
both a and x, and that it lies somewhere between them.

Definitions: The second equation is called Taylor’s formula. The function Rn(x) is called the remainder

of order n or the error term for the approximation of f(x) by Pn(x) over I.

If Rn(x) −→ 0 as n −→∞ for all x ∈ I, we say that the Taylor Series generated by f(x) at x = a converges to f(x) on I,
and we write

f(x) =
∞∑

n=0

f (n)(a)
n! (x− a)n.

Often we can estimate Rn(x) without knowing the value of c.
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Example 1: Show that the Taylor Series generated by f(x) = ex at x = 0 converges to f(x) for every value of x.

f(x) has derivatives of all orders on (−∞,∞). Using the Taylor Polynomial generated by f(x) = ex at a = 0 and Taylor’s
formula, we have

ex = 1 + x + x2

2! + · · ·+ xn

n! + Rn(x)

where Rn(x) = ec

(n + 1)!x
n+1 for some 0 between 0 and x. Recall that ex is an increasing function, so;

x > 0: 0 < c < x =⇒ e0 < ec < ex =⇒ 1 < ec < ex

x < 0: x < c < 0 =⇒ ex < ec < e0 =⇒ ex < ec < 1

x = 0: ex = 1, xn+1 = 0 =⇒ Rn(x) = 0

So,

x > 0: |Rn(x)| =
∣∣∣∣ ecxn+1

(n + 1)!

∣∣∣∣ ≤ exxn+1

(n + 1)!
n→∞−→ 0

x ≤ 0: |Rn(x)| =
∣∣∣∣ ecxn+1

(n + 1)!

∣∣∣∣ ≤ |x|n+1

(n + 1)!
n→∞−→ 0

Thus lim
n→∞

Rn(x) = 0 for all x, so the series converges to ex on (−∞,∞). Thus,

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + · · ·+ xn

n! + · · ·

This gives us a new∗ definition for the number e:

e =
∞∑

n=0

1
n! .

∗ Recall in Calc I we showed e = lim
x→0+

(1 + x)1/x using L’Hôpitals Rule.

The Remainder Estimation Theorem: If there is a positive constant M such that
∣∣f (n+1)(t)

∣∣ ≤M for all t between x

and a, inclusive, then the remainder term Rn(x) in Taylor’s Theorem satisfies the inequality

|Rn(x)| ≤M
|x− a|n+1

(n + 1)! .

If this inequality holds for every n and the other conditions of Taylor’s Theorem are satisfied by f(x), then the series
converges to f(x).

Example 2: Show that the Taylor Series generated by f(x) = sin(x) at a = 0 converges to sin(x) for all x.

Recall that the Taylor Series generated by f(x) = sin(x) at a = 0 is
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1. Since for each n,

∣∣f (2n+1)(x)
∣∣ =

|cos(x)| ≤ 1 and
∣∣f (2n)

∣∣ = |sin(x)| ≤ 1, let M = 1. Then,

|R2n+1(x)| ≤ 1 · |x− 0|2n+2

(2n + 2)!
n→∞−→ 0.

Thus the Taylor Series converges to f(x) = sin(x). That is,

sin(x) =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1
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Using Taylor Series: Since every Taylor series is a power series, the operations of adding, subtracting and multiplying
Taylor series are all valid on the intersection of their intervals of convergence.

Example 3: Using known series, find the first few terms of the Taylor series for

1
3(2x + x cos(x))

using power series operations.
We have,

1
3(2x + x cos(x)) = 2

3x + x

3 cos(x)

= 2
3x + x

3
d

dx
sin(x)

= 2
3x + x

3
d

dx

∞∑
n=0

(−1)n

(2n + 1)!x
2n+1

= 2
3x + x

3

∞∑
n=0

(−1)n

(2n)! x2n

= 2
3x +

∞∑
n=0

(−1)n

3 · (2n)!x
2n+1

= 2
3x + x

3 −
x3

3 · 2! + x5

3 · 4! − · · ·

= x− x3

6 + x5

72 − · · ·

Example 4: For what values of x can we replace sin(x) by the polynomial x− x3

3! with an error of magnitude no greater
than 3× 10−4?
We use the fact that the Taylor series for sin(x) is an alternating series for every non-zero value of x. By the Alternating
Series Estimation Theorem (Section 10.6), the error in truncating

sin(x) = x− x3

3!

∣∣∣∣∣+ x5

5! − · · ·

is no greater than ∣∣∣∣x5

5!

∣∣∣∣ = |x|
5

120 .

So the error will be less than 3× 10−4 if

|x|5

120 < 3× 10−4 ⇐⇒ |x|5 < 360× 10−4 = 0.036 ⇐⇒ |x| < 5
√

0.036 ≈ 0.514.

So, if = −0.514 < x < 0.514, the error obtained from using x− x3

3! to approximate sin(x) will be less than 10× 10−4.

Moreover, by the Alternating Series Estimation Theorem, we know the estimate x− x3

3! is an underestimate of sin(x) when

x is positive, since x5

120 would be positive, and an overestimate if x is negative.
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