Section 10.9: Convergence of Taylor Series

Taylors Theorem: In the last section, we asked when a Taylor Series for a function can be expected to that (generating) function. That question is answered by the following theorem:

If $f(x)$ and its first *n* derivatives $f'(x)$, $f''(x)$, ..., $f^{(n)}(x)$ are continuous on the closed interval between *a* and *b*, and $f^{(n)}(x)$ is differentiable on the open interval between *a* and *b*, then there exists a number *c* between *a* and *b* such that

$$
f(b) = f(a) + f'(a)(b - a) + \frac{f''(a)}{2!}(b - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b - a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b - a)^{n+1}.
$$

Interesting Fact: Taylor's Theorem is a generalisation of the Mean Value Theorem!

Taylor's Formula: If $f(x)$ has derivatives of all orders in a n open interval *I* containing *a*, then for each positive integer *n* and for each $x \in I$,

$$
f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),
$$

where

$$
R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}
$$

for some *c* between *a* and *x*.

Stating Taylor's Theorem in this way says that for each $x \in I$,

$$
f(x) = P_n(x) + R_n(x),
$$

where the function $R_n(x)$ is determined by the value of the $(n+1)^{st}$ derivative $f^{(n+1)}(x)$ at a point *c* that depends on both *a* and *x*, and that it lies somewhere between them.

Definitions: The second equation is called **Taylor's formula**. The function $R_n(x)$ is called the remainder

of order *n* or the <u>error term</u> for the approximation of $f(x)$ by $P_n(x)$ over *I*.

If $R_n(x) \to 0$ as $n \to \infty$ for all $x \in I$, we say that the Taylor Series generated by $f(x)$ at $x = a$ **converges** to $f(x)$ on *I*, and we write

$$
f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x - a)^n.
$$

Often we can estimate $R_n(x)$ without knowing the value of *c*.

Example 1: Show that the Taylor Series generated by $f(x) = e^x$ at $x = 0$ converges to $f(x)$ for every value of *x*.

f(*x*) has derivatives of all orders on $(-\infty, \infty)$. Using the Taylor Polynomial generated by $f(x) = e^x$ at $a = 0$ and Taylor's formula, we have

$$
e^x = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + R_n(x)
$$

where $R_n(x) = \frac{e^c}{(x-1)^n}$ $\frac{e}{(n+1)!}x^{n+1}$ for some 0 between 0 and *x*. Recall that e^x is an increasing function, so;

$$
x > 0: \quad 0 < c < x \implies e^0 < e^c < e^x \implies 1 < e^c < e^x
$$
\n
$$
x < 0: \quad x < c < 0 \implies e^x < e^c < e^0 \implies e^x < e^c < 1
$$
\n
$$
x = 0: \quad e^x = 1, \ x^{n+1} = 0 \implies R_n(x) = 0
$$
\n
$$
x \le 0: \quad |R_n(x)| = \left| \frac{e^c x^{n+1}}{(n+1)!} \right| \le \frac{e^x x^{n+1}}{(n+1)!} \xrightarrow{n \to \infty} 0
$$
\n
$$
x \le 0: \quad |R_n(x)| = \left| \frac{e^c x^{n+1}}{(n+1)!} \right| \le \frac{|x|^{n+1}}{(n+1)!} \xrightarrow{n \to \infty} 0
$$

Thus $\lim_{n\to\infty} R_n(x) = 0$ for all *x*, so the series converges to e^x on $(-\infty, \infty)$. Thus,

$$
e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \dots + \frac{x^n}{n!} + \dots
$$

This gives us a new[∗] definition for the number *e*:

$$
e = \sum_{n=0}^{\infty} \frac{1}{n!}.
$$

^{*} Recall in Calc I we showed $e = \lim_{x \to 0^+} (1+x)^{1/x}$ using L'Hôpitals Rule.

The Remainder Estimation Theorem: If there is a positive constant M such that $|f^{(n+1)}(t)| \leq M$ for all t between x and *a*, inclusive, then the remainder term $R_n(x)$ in Taylor's Theorem satisfies the inequality

$$
|R_n(x)| \le M \frac{|x - a|^{n+1}}{(n+1)!}.
$$

If this inequality holds for every *n* and the other conditions of Taylor's Theorem are satisfied by $f(x)$, then the series converges to $f(x)$.

Example 2: Show that the Taylor Series generated by $f(x) = \sin(x)$ at $a = 0$ converges to $\sin(x)$ for all *x*.

Recall that the Taylor Series generated by $f(x) = \sin(x)$ at $a = 0$ is $\sum_{n=0}^{\infty}$ *n*=0 $(-1)^n$ $\frac{(-1)^n}{(2n+1)!}x^{2n+1}$. Since for each *n*, $|f^{(2n+1)}(x)| =$ $|\cos(x)| \le 1$ and $|f^{(2n)}| = |\sin(x)| \le 1$, let $M = 1$. Then,

$$
|R_{2n+1}(x)| \le 1 \cdot \frac{|x-0|^{2n+2}}{(2n+2)!} \xrightarrow{n \to \infty} 0.
$$

Thus the Taylor Series converges to $f(x) = \sin(x)$. That is,

$$
\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}
$$

Using Taylor Series: Since every Taylor series is a power series, the operations of adding, subtracting and multiplying Taylor series are all valid on the intersection of their intervals of convergence.

Example 3: Using known series, find the first few terms of the Taylor series for

$$
\frac{1}{3}(2x + x\cos(x))
$$

using power series operations. We have,

$$
\frac{1}{3}(2x + x \cos(x)) = \frac{2}{3}x + \frac{x}{3}\cos(x)
$$

\n
$$
= \frac{2}{3}x + \frac{x}{3}\frac{d}{dx}\sin(x)
$$

\n
$$
= \frac{2}{3}x + \frac{x}{3}\frac{d}{dx}\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!}x^{2n+1}
$$

\n
$$
= \frac{2}{3}x + \frac{x}{3}\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}x^{2n}
$$

\n
$$
= \frac{2}{3}x + \sum_{n=0}^{\infty} \frac{(-1)^n}{3 \cdot (2n)!}x^{2n+1}
$$

\n
$$
= \frac{2}{3}x + \frac{x}{3} - \frac{x^3}{3 \cdot 2!} + \frac{x^5}{3 \cdot 4!} - \cdots
$$

\n
$$
= x - \frac{x^3}{6} + \frac{x^5}{72} - \cdots
$$

Example 4: For what values of *x* can we replace $sin(x)$ by the polynomial $x - \frac{x^3}{2!}$ $\frac{x}{3!}$ with an error of magnitude no greater than 3×10^{-4} ?

We use the fact that the Taylor series for $sin(x)$ is an alternating series for every non-zero value of x. By the Alternating Series Estimation Theorem (Section 10.6), the error in truncating

$$
\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots
$$

is no greater than

$$
\left|\frac{x^5}{5!}\right| = \frac{|x|^5}{120}.
$$

So the error will be less than 3×10^{-4} if

$$
\frac{|x|^5}{120} < 3 \times 10^{-4} \quad \iff \quad |x|^5 < 360 \times 10^{-4} = 0.036 \quad \iff \quad |x| < \sqrt[5]{0.036} \approx 0.514.
$$

So, if $= -0.514 < x < 0.514$, the error obtained from using $x - \frac{x^3}{3!}$ to approximate sin(*x*) will be less than 10×10^{-4} .

Moreover, by the Alternating Series Estimation Theorem, we know the estimate $x - \frac{x^3}{2!}$ $\frac{x}{3!}$ is an <u>underestimate</u> of $sin(x)$ when x is positive, since $\frac{x^5}{100}$ $\frac{1}{120}$ would be positive, and an overestimate if *x* is negative.