Section 10.9: Convergence of Taylor Series

Taylors Theorem: In the last section, we asked when a Taylor Series for a function can be expected to that (generating)

function. That question is answered by the following theorem:

If f(z) and its first n derivatives f’(z), f”(z), ..., f™(x) are continuous on the closed interval between a and b, and
f)(z) is differentiable on the open interval between a and b, then there exists a number ¢ between a and b such that
o, F7()

(b— CL) + m(b—a)”“.

f"(a)
2!

f(b) = fa) + f'(a)(b—a) + (b—a)?+--+

Interesting Fact: Taylor’s Theorem is a generalisation of the Mean Value Theorem!

Taylor’s Formula: If f(x) has derivatives of all orders in a n open interval I containing a, then for each positive integer

n and for each x € I,

"(a (n) a
1) = f(a) + fa)e )+ T o T oy,
where
(n+1) (¢

for some ¢ between a and x.

Stating Taylor’s Theorem in this way says that for each x € I,
f(x) = Po(z) + Rn(x),

where the function R, (x) is determined by the value of the (n + 1) derivative f("+1)(z) at a point ¢ that depends on

both a and z, and that it lies somewhere between them.

Definitions: The second equation is called Taylor’s formula. The function R, (x) is called the remainder

of order n or the error term for the approximation of f(x) by P,(z) over I.

If R,(x) — 0asn — oo for all = € I, we say that the Taylor Series generated by f(z) at £ = a converges to f(z) on I,

and we write
> () (g
fa) =3 D
n=0 !

Often we can estimate R, (z) without knowing the value of c.
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Example 1: Show that the Taylor Series generated by f(x) = e® at x = 0 converges to f(z) for every value of z.

f(x) has derivatives of all orders on (—oco,00). Using the Taylor Polynomial generated by f(z) = e* at a = 0 and Taylor’s

formula, we have

" x? "
€ :1+$+§++H+Rn(l‘)
c
where R, (x) = ( i 1)':1:”‘*‘1 for some 0 between 0 and x. Recall that e® is an increasing function, so;
n !
So,
>0 O<c<z=el<el<e® =1<e’<e"
€C$n+1 €$$n+1 oo
x>0 |R,(2)] = < — 0
r<0 zr<c<0=e"<e'<e’=e"<e’<1 (n+1)! (n+1)!
cn+1 n+1
P=0 =10 =0 = Ry(x) =0 p<0 [Ru(e)] = | o
- (n+1! = (n+1)!

Thus lim R, (z) =0 for all z, so the series converges to e* on (—oo,00). Thus,
n—oo

" x? "
T — —_— l_ + — + o e —|— — + .« ..
c Zo n! L 2! n!
n—

This gives us a new” definition for the number e:

— 1
e = Z ﬁ
n=0
* Recall in Calc T we showed e = 11%1+ (1+ 2)"* using L'Hopitals Rule.
r—
The Remainder Estimation Theorem: If there is a positive constant M such that | f (”+1)(t)| < M for all t between x
and a, inclusive, then the remainder term R, (x) in Taylor’s Theorem satisfies the inequality
|IE _ a‘n+1
R, <M——m—-.
o)l < MEE )
If this inequality holds for every n and the other conditions of Taylor’s Theorem are satisfied by f(x), then the series

converges to f(x).

Example 2: Show that the Taylor Series generated by f(z) = sin(x) at a = 0 converges to sin(z) for all z.

0o 1)
Recall that the Taylor Series generated by f(z) = sin(z) at a =0 is Z (2(_’_)1)'x2”+1. Since for each n, |f(2”+1)(x)| =
n !

n=0
|cos(z)| <1 and |f#")| = [sin(z)| < 1, let M = 1. Then,
(2n +2)!

n—roo
0

|Rant1(z)] <1
Thus the Taylor Series converges to f(z) = sin(z). That is,

: _ - (_1)7L 2n+1
Sln(fL‘) = Z mx
n=0
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Using Taylor Series: Since every Taylor series is a power series, the operations of adding, subtracting and multiplying

Taylor series are all valid on the intersection of their intervals of convergence.
Example 3: Using known series, find the first few terms of the Taylor series for
1
5(21: + x cos(x))

using power series operations.

We have,
1 2
5(233 + xcos(x)) = 3% + g cos(x)
2 ;
= gx—&—g—x sin(x)
_ 2 zd >~ (=) 2n+1
=3t 3m 2n+ 11"
n=0
2 o~ ()",
_3“3; )’
o 2 - (_1)n 2n+1
- 3$+7§3- 2n)! "
37 3 3.2 3.4
3 2P

T T

x
Example 4: For what values of x can we replace sin(x) by the polynomial z — 37 with an error of magnitude no greater
than 3 x 10747 '
We use the fact that the Taylor series for sin(x) is an alternating series for every non-zero value of x. By the Alternating

Series Estimation Theorem (Section 10.6), the error in truncating

ol
sm(x):x—g +5—-~-
is no greater than
2| |2
511 1207

So the error will be less than 3 x 10~% if

5
%) <3x107% = |2°<360x107*=0.036 <= |z| < V0.036~ 0.514.

3
x
So, if = —0.514 < x < 0.514, the error obtained from using = — a7 to approximate sin(x) will be less than 10 x 10~%.
23
Moreover, by the Alternating Series Estimation Theorem, we know the estimate z — Bl
. !

x is positive, since 120 would be positive, and an overestimate if x is negative.

is an underestimate of sin(x) when
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