Section 10.9: Convergence of Taylor Series

Taylors Theorem: In the last section, we asked when a Taylor Series for a function can be expected to that (generating) function. That question is answered by the following theorem:

If f(x) and its first n derivatives f'(x), f''(x), ..., $f^{(n)}(x)$ are continuous on the closed interval between a and b, and $f^{(n)}(x)$ is differentiable on the open interval between a and b, then there exists a number c between a and b such that

$$f(b) = f(a) + f'(a)(b-a) + \frac{f''(a)}{2!}(b-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(b-a)^n + \frac{f^{(n+1)}(c)}{(n+1)!}(b-a)^{n+1}.$$

Interesting Fact: Taylor's Theorem is a generalisation of the Mean Value Theorem!

Taylor's Formula: If f(x) has derivatives of all orders in a nopen interval I containing a, then for each positive integer n and for each $x \in I$,

$$f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x),$$

where

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}$$

for some c between a and x.

Stating Taylor's Theorem in this way says that for each $x \in I$,

$$f(x) = P_n(x) + R_n(x),$$

where the function $R_n(x)$ is determined by the value of the $(n+1)^{st}$ derivative $f^{(n+1)}(x)$ at a point c that depends on both a and x, and that it lies somewhere between them.

Definitions: The second equation is called **Taylor's formula**. The function $R_n(x)$ is called the ______

or the _____ for the approximation of f(x) by $P_n(x)$ over I.

If $R_n(x) \longrightarrow 0$ as $n \longrightarrow \infty$ for all $x \in I$, we say that the Taylor Series generated by f(x) at x = a converges to f(x) on I, and we write

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

Often we can estimate $R_n(x)$ without knowing the value of c.

The Remainder Estimation Theorem: If there is a positive constant M such that $|f^{(n+1)}(t)| \leq M$ for all t between x and a, inclusive, then the remainder term $R_n(x)$ in Taylor's Theorem satisfies the inequality

$$|R_n(x)| \le M \frac{|x-a|^{n+1}}{(n+1)!}.$$

If this inequality holds for every n and the other conditions of Taylor's Theorem are satisfied by f(x), then the series converges to f(x).

Example 2: Show that the Taylor Series generated by $f(x) = \sin(x)$ at a = 0 converges to $\sin(x)$ for all x.

Using Taylor Series: Since every Taylor series is a power series, the operations of adding, subtracting and multiplying Taylor series are all valid on the intersection of their intervals of convergence.

Example 3: Using known series, find the first few terms of the Taylor series for

$$\frac{1}{3}(2x + x\cos(x))$$

using power series operations.

Example 4: For what values of x can we replace $\sin(x)$ by the polynomial $x - \frac{x^3}{3!}$ with an error of magnitude no greater than 3×10^{-4} ?