Section 10.8: Taylor and Maclaurin Series

Series Representations: We've seen that geometric series can be used to generate a power series for functions having a

special form, such as f(z) = _or g(z) = et Can we also express functions of different forms as power series?

1—

If we assume that a function f(x) with derivatives of all orders is the sum of a power series about = a then we can

readily solve for the coefficients ¢,,.
Suppose
o0

f(z) = ch(m—a)" =co+ci(z—a)+er—a)?+c(z—a)+ -

n=0

with positive radius of converges R. By repeated term-by-term differentiation within the interval of convergence, we obtain:

flx)=1-c;+2-co(x—a)+3-c3(x—a)’+4-cule—a)* +--+n-co(x—a)" 14
") =21-c2+3-2-c3(x—a)+4-3-culx—a)’+ - 4+n-(n—1)-cp(x —a)" 2 +---

f(x)=3-2-1-c3+4-3-2-c4(x—a)+---+n-(n—1)-(n=2)-cu(z —a)" 2 +---

Since x = a is in the assumed interval of convergence, all of the above equations are valid when = = a:
f(a) = co, flla)=1¢, f(a)y=2-1-cy, f"(a)=3-2-1-cs, f™(a) =n!- e,

Solving for each ¢, gives:

’ " " (n)
co = f(a), = @ cr = f2 (Clb) c3 = i‘,)f_ 2@1, en=? n!(a)
Thus, if f(x) has such a series representation, it must have the form
" (n) > f(n)
o) = e+ £ @ =+ T o o E a2

On the other hand, if we start with an arbitrary function f(z) that is infinitely differentiable on an interval containing

2z = a and use it to generate the series above, will the series then converge to f(z) at each x in the interval of convergence?

The answer is maybe.



Section 10.8: Taylor and Maclaurin Series MATH 142

Definitions: Let f(x) be a function with derivatives of all orders throughout some open interval containing a. Then the

Taylor Series generated by f(z) at x = a is

~—

) f"(‘a (x—a)" = f(a) + f'(a)(x — a) + f//(,a)(x—a)2+-~~+7(x—a)"+... .

n=0

The Maclaurin Series generated by f(x) is the Taylor series generated by f(x) at a = 0.

1 1
Example 1: Find the Taylor series generated by f(z) = — at a = 2. Where, if anywhere, does the series converge to —?
x x

n £ (x) F"(a)
) ) The key thing to do when looking for the
0 - 5 general term is to not simplify everything.
. . You should try and only group those terms
1 (=1)- ) (*1)2*2 that come from the “same place.” For ex-
ample, when n = 2 we could have cancelled
2.1 2.1
2 (—1)*- - (—1)2273 a 2 from the numerator and denominator
of f”(2). But since the 2 in the numerator
3-2-1 3-2-1
3 (-1)® por (—1)3 50 came from differentiating and the 2 on the
denominator came from plugging in = = a,
L 4321 W4-3.201 .
4 (=1)*- - (-1) 5 we leave them alone. Leaving factors alone
md
this way will help you more easily see where
each number in the factor is coming from
n ol n nl . .
n (=)™ - e (-1 St and its relation to the value of n.

1
So, the Taylor Series generated by f(z) = — centred at a = 2 is given by
T

n_n!

oo (n)a 0o L [ a\nm
S Loy = Y 0 oy |5 Sy

n! n!
=0 n=0

n=0

3

Note that

1
is geometric with first term 3 and ratio r = — . So it converges (absolutely) for

<l=lz-2[<2=0<z<4

52

Now we check the endpoints:

. - (_1)n n - (_1)n(_2)n — 2" — 1 . (Also clear since f(z) = L
v=0 Z on+1 0-2)"= Z ontl Z on+l Z g — diverges. g

is not defined at = = 0)

n=0 n=0 n=0 n=0
, o~ (=D)" n_ N~ (D2 s (D" :
r =4: Zw(4—2)L:ZW:ZTzdIVergeS.
n=0 n=0 n=0

Thus the only values of x for which this Taylor Series converges are .
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Definition: Let f(z) be a function with derivatives of order 1,..., N in some open interval containing a. Then for any

integer n from 0 through N, the Taylor polynomial of order n generated by f(z) at x = a is the polynomial

f"(a)

") (q
o f ( )(m_a)n'

n!

P,(z) = f(a) + f'(a)(z — a) + (z—a)?+-- +

Just as the linearisation of f(z) at x = a provides the best linear approximation of f(z) in a neighbourhood of a, the

higher-order Taylor polynomials provide the best polynomial approximations of their respective degrees.

Example 2: Find the Taylor Series and Taylor polynomials generated by f(z) = cos(z) at a = 0.

n () F™(a)
When terms are alternating between 0s and
0 cos(x) 1 .
non-zero terms, take a look at the parity
of the values of n for which they appear.
1 —sin(x) 0 . .
That is, check if all the Os occur when
n is odd (or when n is even). Once you
2 —cos(x) -1 o ) )
figure out which is which you can ignore
all the zero terms by considering 2n or 2n+-1.
3 sin(x) 0
If you are dealing with trigonometric func-
4 cos(x) 1 . s . .
tions, it is likely that at some point there will
be some repetition happening. For example
here f((z) = f(x). So then you might be
2n (=1)™ cos(x) (=)™ . . .
able to see what is happening by only using
the terms up until the repeat.
2n + 1 (—1)"*1gin(x) (=1H)"0

So the Taylor Series generated by f(z) = cos(z) at a =0 is

n

2 n!( do—ay - Z((Zn))!x2

n=0 n=0

To find the interval of convergence, we can use the Ratio Test:

(_1)n+1w2(n+1)
| Temror || @) | z? oo
- <—(12>:)z|% S @2n+2) (-D)ma? | (2n+2)(2n41)

Ap+1
an

So this Taylor Series converges for all z € R.

Finally, the Taylor polynomials are given by:

P (x):i(—l)kx :1_72+74_...+(_1)n 2n
T & ()] 2 " @n)!
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Example 3: Find the Maclaurin Series generated by f(z) = sin(z).

Recall that cos(x) is an even function and we have just discovered in Example 2 that only even powers of x occur in its
Maclaurin Series. One would expect then that since f(x) = sin(z) is an odd function that only odd powers of x will appear in

its Maclaurin Series. Indeed this is actually the case. Doing the same calculations as in Example 2 will yield the desired result.

xT
Here however we will just invoke the power of integration: Since / cos(t) dt = sin(z) and
0

x
(_1)n t2n+1 _ (_1)n x2n+1
(2n +1)! , @+ ’

(2n)! (2n)! (2n+1)

T (_1\n _1\n 2n—+1
[y GOt
0

0

we have the Taylor Series generated by f(z) = sin(z) is

BN G L B e DT
A n;) Gt = nz(znﬂ)!x ’

X

Example 4: Find the Taylor Series generated by f(z) = e®.

Note that f(")(z) = f(z) = e* for every positive integer n. So f(")(0) = €® = 1 for each n, so then the Taylor Series
at

generated by f(z) = e* at a = 0 is given by

— f"(a) n_|x~2"
nz:% n! (z—a) :;H
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