
Section 10.8: Taylor and Maclaurin Series

Series Representations: We’ve seen that geometric series can be used to generate a power series for functions having a
special form, such as f(x) = 1

1− x
or g(x) = 3

x− 2 . Can we also express functions of different forms as power series?

If we assume that a function f(x) with derivatives of all orders is the sum of a power series about x = a then we can
readily solve for the coefficients cn.

Suppose

f(x) =
∞∑

n=0
cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

with positive radius of converges R. By repeated term-by-term differentiation within the interval of convergence, we obtain:

f ′(x) = 1 · c1 + 2 · c2(x− a) + 3 · c3(x− a)2 + 4 · c4(x− a)3 + · · ·+ n · cn(x− a)n−1 + · · ·

f ′′(x) = 2 · 1 · c2 + 3 · 2 · c3(x− a) + 4 · 3 · c4(x− a)2 + · · ·+ n · (n− 1) · cn(x− a)n−2 + · · ·

f ′′′(x) = 3 · 2 · 1 · c3 + 4 · 3 · 2 · c4(x− a) + · · ·+ n · (n− 1) · (n− 2) · cn(x− a)n−2 + · · ·

=
...

Since x = a is in the assumed interval of convergence, all of the above equations are valid when x = a:

f(a) = c0, f ′(a) = 1 · c1, f ′′(a) = 2 · 1 · c2, f ′′′(a) = 3 · 2 · 1 · c3, f (n)(a) = n! · cn

Solving for each ck gives:

c0 = f(a), c1 = f ′(a)
1 , c2 = f ′′(a)

2 · 1 , c3 = f ′′′(a)
3 · 2 · 1 , cn = f (n)(a)

n!

Thus, if f(x) has such a series representation, it must have the form

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n + · · · =
∞∑

n=0

f (n)(a)
n! (x− a)n.

On the other hand, if we start with an arbitrary function f(x) that is infinitely differentiable on an interval containing
x = a and use it to generate the series above, will the series then converge to f(x) at each x in the interval of convergence?
The answer is maybe.
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Definitions: Let f(x) be a function with derivatives of all orders throughout some open interval containing a. Then the
Taylor Series generated by f(x) at x = a is

∞∑
n=0

fn(a)
n! (x− a)n = f(a) + f ′(a)(x− a) + f ′′(a)

2! (x− a)2 + · · ·+ f (n)(a)
n! (x− a)n + · · · .

The Maclaurin Series generated by f(x) is the Taylor series generated by f(x) at a = 0.

Example 1: Find the Taylor series generated by f(x) = 1
x

at a = 2. Where, if anywhere, does the series converge to 1
x
?

n f (n)(x) f (n)(a)

0 1
x

1
2

1 (−1) · 1
x2 (−1) 1

22

2 (−1)2 · 2 · 1
x3 (−1)2 2 · 1

23

3 (−1)3 · 3 · 2 · 1
x4 (−1)3 3 · 2 · 1

24

4 (−1)4 · 4 · 3 · 2 · 1
x5 (−1)4 4 · 3 · 2 · 1

25

n (−1)n · n!
xn+1 (−1)n n!

2n+1

The key thing to do when looking for the
general term is to not simplify everything.
You should try and only group those terms
that come from the “same place.” For ex-
ample, when n = 2 we could have cancelled
a 2 from the numerator and denominator
of f ′′(2). But since the 2 in the numerator
came from differentiating and the 2 on the
denominator came from plugging in x = a,
we leave them alone. Leaving factors alone
this way will help you more easily see where
each number in the factor is coming from
and its relation to the value of n.

So, the Taylor Series generated by f(x) = 1
x

centred at a = 2 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n n!
2n+1

n! (x− 2)n =
∞∑

n=0

(−1)n

2n+1 (x− 2)n

Note that

f(x) =
∞∑

n=0

(−1)n

2n+1 (x− 2)n = 1
2 −

(x− 2)
22 + (x− 2)2

23 − · · ·+ (−1)n(x− 2)n

2n+1

is geometric with first term 1
2 and ratio r = − (x− 2)

2 . So it converges (absolutely) for

∣∣∣∣− (x− 2)
2

∣∣∣∣ < 1 =⇒ |x− 2| < 2 =⇒ 0 < x < 4.

Now we check the endpoints:

x = 0:
∞∑

n=0

(−1)n

2n+1 (0− 2)n =
∞∑

n=0

(−1)n(−2)n

2n+1 =
∞∑

n=0

2n

2n+1 =
∞∑

n=0

1
2 =⇒ diverges. (Also clear since f(x) =

1
x

is not defined at x = 0)

x = 4:
∞∑

n=0

(−1)n

2n+1 (4− 2)n =
∞∑

n=0

(−1)n2n

2n+1 =
∞∑

n=0

(−1)n

2 =⇒ diverges.

Thus the only values of x for which this Taylor Series converges are 0 < x < 4 .
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Definition: Let f(x) be a function with derivatives of order 1, . . . , N in some open interval containing a. Then for any
integer n from 0 through N , the Taylor polynomial of order n generated by f(x) at x = a is the polynomial

Pn(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n.

Just as the linearisation of f(x) at x = a provides the best linear approximation of f(x) in a neighbourhood of a, the
higher-order Taylor polynomials provide the best polynomial approximations of their respective degrees.

Example 2: Find the Taylor Series and Taylor polynomials generated by f(x) = cos(x) at a = 0.

n f (n)(x) f (n)(a)

0 cos(x) 1

1 − sin(x) 0

2 − cos(x) −1

3 sin(x) 0

4 cos(x) 1

2n (−1)n cos(x) (−1)n

2n + 1 (−1)n+1 sin(x) (−1)n0

When terms are alternating between 0s and
non-zero terms, take a look at the parity
of the values of n for which they appear.
That is, check if all the 0s occur when
n is odd (or when n is even). Once you
figure out which is which you can ignore
all the zero terms by considering 2n or 2n+1.

If you are dealing with trigonometric func-
tions, it is likely that at some point there will
be some repetition happening. For example
here f (4)(x) = f(x). So then you might be
able to see what is happening by only using
the terms up until the repeat.

So the Taylor Series generated by f(x) = cos(x) at a = 0 is

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n

(2n)! x2n

To find the interval of convergence, we can use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(−1)n+1x2(n+1)

(2(n+1))!
(−1)nx2n

(2n)!

∣∣∣∣∣∣ =
∣∣∣∣ (−1)n+1x2n+2

(2n + 2)! · (2n)!
(−1)nx2n

∣∣∣∣ = x2

(2n + 2)(2n + 1)
n→∞−→ 0

So this Taylor Series converges for all x ∈ R.

Finally, the Taylor polynomials are given by:

P2n(x) =
n∑

k=0

(−1)k

(2k)! x2k = 1− x2

2 + x4

24 − · · ·+ (−1)n x2n

(2n)! .
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Example 3: Find the Maclaurin Series generated by f(x) = sin(x).

Recall that cos(x) is an even function and we have just discovered in Example 2 that only even powers of x occur in its
Maclaurin Series. One would expect then that since f(x) = sin(x) is an odd function that only odd powers of x will appear in
its Maclaurin Series. Indeed this is actually the case. Doing the same calculations as in Example 2 will yield the desired result.

Here however we will just invoke the power of integration: Since
ˆ x

0
cos(t) dt = sin(x) and

ˆ x

0

(−1)n

(2n)! t2n dt = (−1)n

(2n)! ·
t2n+1

(2n + 1)

∣∣∣∣∣
x

0

= (−1)n

(2n + 1)! t
2n+1

∣∣∣∣∣
x

0

= (−1)n

(2n + 1)!x
2n+1,

we have the Taylor Series generated by f(x) = sin(x) is

ˆ x

0

∞∑
n=0

(−1)n

(2n)! t2n dt =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1

Example 4: Find the Taylor Series generated by f(x) = ex.

Note that f (n)(x) = f(x) = ex for every positive integer n. So f (n)(0) = e0 = 1 for each n, so then the Taylor Series
generated by f(x) = ex at a = 0 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

xn

n!
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