## Section 10.8: Taylor and Maclaurin Series

Series Representations: We've seen that geometric series can be used to generate a power series for functions having a special form, such as  $f(x) = \frac{1}{1-x}$  or  $g(x) = \frac{3}{x-2}$ . Can we also express functions of different forms as power series?

If we assume that a function f(x) with derivatives of all orders is the sum of a power series about x = a then we can readily solve for the coefficients  $c_n$ .

Suppose

$$f(x) = \sum_{n=0}^{\infty} c_n (x-a)^n = c_0 + c_1 (x-a) + c_2 (x-a)^2 + c_3 (x-a)^3 + \cdots$$

with positive radius of converges R. By repeated term-by-term differentiation within the interval of convergence, we obtain:

**Definitions**: Let f(x) be a function with derivatives of all orders throughout some open interval containing a. Then the **Taylor Series generated by** f(x) at x = a is

$$\sum_{n=0}^{\infty} \frac{f^n(a)}{n!} (x-a)^n = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n + \dots$$

The Maclaurin Series generated by f(x) is the Taylor series generated by f(x) at a = 0.

**Example 1**: Find the Taylor series generated by  $f(x) = \frac{1}{x}$  at a = 2. Where, if anywhere, does the series converge to  $\frac{1}{x}$ ?

**Definition**: Let f(x) be a function with derivatives of order  $1, \ldots, N$  in some open interval containing a. Then for any integer n from 0 through N, the **Taylor polynomial** of order n generated by f(x) at x = a is the polynomial

$$P_n(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!}(x-a)^n.$$

Just as the linearisation of f(x) at x = a provides the best linear approximation of f(x) in a neighbourhood of a, the higher-order Taylor polynomials provide the best polynomial approximations of their respective degrees.

**Example 2**: Find the Taylor Series and Taylor polynomials generated by  $f(x) = \cos(x)$  at a = 0.

**Example 3**: Find the Maclaurin Series generated by  $f(x) = \sin(x)$ .

**Example 4**: Find the Taylor Series generated by  $f(x) = e^x$ .