
Section 10.7: Power Series

Definition: A power series about x = 0 is a series of the form

∞∑
n=0

cnxn = c0 + c1x + c2x2 + · · ·+ cnxn + · · · .

A power series about x = a is a series of the form

∞∑
n=0

cn (x− a)n = c0 + c1 (x− a) + c2 (x− a)2 + · · ·+ cn (x− a)n + · · ·

in which the centre a and the coefficients c0, c1, c2, . . . , cn, . . . are constants.

Example 1 - Geometric Power Series: Taking all the coefficients to be 1 in the power series centred at x = 0 gives
the geometric power series:

∞∑
n=0

xn = 1 + x + x2 + x3 + · · ·+ xn + · · · .

This is the geometric series with first term 1 and ratio x.

Sn = 1 + x + x2 + x3 + x4 + · · ·+ xn

=⇒ (1− x)Sn = (1− x)
(
1 + x + x2 + x3 + x4 + · · ·+ xn

)
=
(
1 + x + x2 + x3 + x4 + · · ·+ xn

)
−
(
x + x2 + x3 + x4 + x5 · · ·+ xn+1)

= 1− xn+1

=⇒ Sn = 1− xn

1− x

So,

∞∑
n=0

xn = lim
n→∞

Sn = lim
n→∞

1− xn

1− x
which converges if and only if |x| < 1

Instead of focussing on finding a formula for the sum of a power series, we are now going to think of the partial sums of the
series as polynomials Pn(x) that approximate the function on the left. For values of x near zero, we need only take a few
terms of the series to get a good approximation. As we move toward x = 1 or x = −1, we need more terms.

One of the most important questions we can ask about a power series is “for what values of x will the series converge?”
Since power series are functions, what we are really asking here is “what is the domain of the power series?”
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Example 2: Consider the power series

1− 1
2(x− 2) + 1

4(x− 2)2 − · · ·+
(
−1

2

)n

(x− 2)n + · · ·

Centre: a = 2, c0 = 1, c1 = −1
2 , c2 = 1

4, . . . , cn =
(
−1

2

)n

,

Ratio: r = cn+1

cn
= c1

c0
=
− 1

2 (x− 2)
1 = −x− 2

2

The series converges when |r| < 1, that is,∣∣∣∣−x− 2
2

∣∣∣∣ < 1 =⇒
∣∣∣∣x− 2

2

∣∣∣∣ < 1 =⇒ |x− 2| < 2 =⇒ −2 < x− 2 < 2 =⇒ 0 < x < 4.

Example 3: For what values of x do the following series converge?

(a)
∞∑

n=1
(−1)n−1 xn

n
.

We will use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣(−1)n xn+1

n + 1 ·
n

(−1)n−1xn

∣∣∣∣ =
∣∣∣∣ nx

x + 1

∣∣∣∣ = |x| n

n + 1
n→∞−→ |x|

The series converges absolutely when |x| < 1 and diverges when |x| > 1. It remains to see what happens at the
endpoints; x = −1 and x = 1.

x = −1:
∞∑

n=1
(−1)n−1 (−1)n

n
=
∞∑

n=1

(−1)2n−1

n
=
∞∑

n=1

−1
n

= −
∞∑

n=1

1
n

=⇒ the series diverges at x = −1.

x = 1:
∞∑

n=1
(−1)n−1 1n

n
=
∞∑

n=1

(−1)n−1

n
= the Alternating Harmonic Series =⇒ the series converges at x = 1.

So, the series
∞∑

n=1
(−1)n−1 xn

n
converges for −1 < x ≤ 1 and diverges elsewhere.

(b)
∞∑

n=0

xn

n! .

We will use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ xn+1

(n + 1)! ·
n!
xn

∣∣∣∣ =
∣∣∣∣ xn+1

(n + 1) · n! ·
n!
xn

∣∣∣∣ =
∣∣∣∣ x

n + 1

∣∣∣∣ = |x|
n + 1 =n→∞−→ 0

Since the value of the limit is 0, no matter what real number we choose for x and 0 < 1, the series converges absolutely
for all values of x. (x ∈ R, −∞ < x <∞, (−∞,∞)).

Fact: There is always at least one point for which a power series converges: the point x = a at which the series is centred.
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The Convergence Theorem for Power Series: If the power series
∞∑

n=0
anxn converges at x = c 6= 0, then it converges

absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

The Convergence Theorem and the previous examples lead to the conclusion that a power series
∑

cn(x− a)n behaves in
one of three possible ways;

• If might converge on some interval of radius R. an interval has radius R if its length is 2R

• It might converge everywhere.

• It might converge only at x = a.

The Radius of Convergence of a Power Series: The convergence of the series
∑

cn(x− a)n is described by one of
the following three cases:

1. There is a positive number R such that the series diverges for x with |x− a| > R but converges absolutely for x with
|x− a| < R. The series may or may not converge at either of the endpoints x = a−R and x = a + R.

2. The series converges absolutely for every x (R =∞)

3. The series converges only at x = a and diverges elsewhere (R = 0)

R is called the radius of convergence of the power series, and the interval of radius R centred at x = 1 is called the
interval of convergence. The interval of convergence may be open, closed or half open, depending on the series.

How to test a Power Series for Convergence:

1. Use the Ratio (or Root) Test to find the interval where the series converges absolutely. Ordinarily, this is an open
interval

|x− a| < R or a−R < x < a + R.

2. If the interval of absolute convergence is finite, test fo convergence or divergence at each endpoint. Use a Comparison
Test, the Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is a− R < x < a + R, the series diverges for |x− a| > R (it does not even
converge conditionally) because the nth term does not approach zero for those values of x.
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Example 4: Find the interval and radius of convergence for

∞∑
n=1

xn

n
√

n3n
=
∞∑

n=1

xn

n3/23n
.

Ratio Test:

lim
n→∞

∣∣∣∣ xn+1

(n + 1)3/23n+1 ·
n3/23n

xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn3/2

(n + 1)3/23

∣∣∣∣ = |x|3 lim
n→∞

(
n

n + 1

)3/2
= |x|3 .

So the series converges absolutely when |x|3 < 1 =⇒ |x| < 3 =⇒ −3 < x < 3.

Check the endpoints:

x = −3:
∞∑

n=1

(−3)n

n3/23n
=
∞∑

n=1

(−1)n

n3/2 which is an alternating p-series with p = 3
2, so it converges.

x = 3:
∞∑

n=1

3n

n3/23n
=
∞∑

n=1

1
n3/2 which is a p-series with p = 3

2, so it converges.

Thus the interval of convergence is [−3, 3] and the radius of convergence is R = 3.

Operations on Power Series: On the intersection of their intervals of convergence, two power series can be added and
subtracted term by term just like series of constants. They can be multiplied just as we multiply polynomials, but we often
limit the computation of the product to the first few terms, which are the most important. The following result gives a
formula for the coefficients in the product.

The Series Multiplication Theorem for Power Series: If A(x) =
∞∑

n=0
anxn and Bn(x) =

∞∑
n=0

bnxn converge absolutely

for |x| < R, and

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0 =
n∑

k=0
akbn−k,

then
∞∑

n=0
cnxn converges absolutely to A(x)B(x) for |x| < R:( ∞∑

n=0
anxn

)
·

( ∞∑
n=0

bnxn

)
=
∞∑

n=0
cnxn.

We can also substitute a function f(x) for x in a convergent power series:

Theorem: If
∞∑

n=0
anxn converges absolutely for |x| < R, then

∞∑
n=0

an (f(x))n converges absolutely for any continuous

function f(x) with |f(x)| < R. For example:

Since 1
1− x

=
∞∑

n=0
xn converges absolutely for |x| < 1, it follows that

1
1− 4x2 =

∞∑
n=0

(4x2)n =
∞∑

n=0
4nx2n

converges absolutely for |4x2| < 1 or |x| < 1
2 .
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Term-by-Term Differentiation Theorem: If
∑

cn(x− a)n has radius of convergence R > 0, it defines a function

f(x) =
∞∑

n=0
cn (x− a)n

on the interval a−R < x < a + R. This function f(x) has derivatives of all orders inside the interval, and we obtain the
derivatives by differentiating the original series term by term:

f ′(x) =
∞∑

n=1
ncn (x− a)n−1

,

f ′′(x) =
∞∑

n=2
n(n− 1)cn(x− a)n−2,

and so on. Each of these series converge at every point of the interval a−R < x < a + R.
Note: When we differentiate we may have to start our index at one more than it was before. This is because we lose the
constant term (if it exists) when we differentiate.

Be Careful!! Term-by-Term differentiation might not work for other kinds of series. For example, the trigonometric series

∞∑
n=0

sin(n!x)
n2

converges for all x. But if we differentiate term by term we get the series

∞∑
n=0

n! cos(n!x)
n2

which diverges for all x. This is not a power series since it is not a sum of positive integer powers of x.

Example 5: Find a series for f ′(x) and f ′′(x) if

f(x) = 1
1− x

= 1 + x + x2 + x3 + x4 + · · ·+ xn + · · · =
∞∑

n=0
xn, −1 < x < 1.

f ′(x) = 1
(1− x)2 = 0 + 1 + 2x + 3x2 + 4x3 + · · ·+ nxn−1 + · · · =

∞∑
n=1

nxn−1, −1 < x < 1.

f ′′(x) = 2
(1− x)3 = 0 + 0 + 2 + 6x + 12x2 + · · ·+ n(n− 1)xn−2 + · · · =

∞∑
n=2

n(n− 1)xn−2, −1 < x < 1.
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Term-by-Term Integration Theorem: Suppose that

f(x) =
∞∑

n=0
cn(x− 1)n

converges for a−R < x < a + R for R > 0. Then,

∞∑
n=0

cn
(x− a)n+1

n + 1

converges for a−R < x < a + R and

ˆ
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n + 1

for a−R < x < a + R.

Example 6: Given 1
1 + t

= 1− t + t2 − t3 + · · · converges on −1 < t < 1, find a series representation for f(x) = ln(1 + x).

ln(1 + x) =
ˆ x

0

1
1 + t

dt = t− t2

2 + t3

3 −
t4

4 + · · ·
∣∣∣∣∣
x

0

‘ = x− x2

2 + x3

3 −
x4

4 + · · ·

=
∞∑

n=1

(−1)n+1xn

n
, −1 < x < 1.

Example 7: Identify the function f(x) such that

f(x) =
∞∑

n=0

(−1)nx2n+1

2n + 1 = x− x3

3 + x5

5 −
x7

7 + · · · , −1 < x < 1.

Differentiate

f ′(x) = 1− x2 + x4 − x6 + · · · =
∞∑

n=0
(−1)nx2n =

∞∑
n=0

(−x2)n, −1 < x < 1.

This is a geometric series with first term 1 and ratio −x2, so

f ′(x) = 1
1− (−x2) = 1

1 + x2 .

Now we can integrate to find f(x):

f(x) =
ˆ

f ′(t) dt = arctan(x) + C.

Since f(0) = 0, we have 0 = arctan(0) + C = C, so then

f(x) =
∞∑

n=0

(−1)nx2n+1

2n + 1 = arctan(x) − 1 < x < 1
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