
Section 10.6: The Alternating Series Test

Definition: A series whose terms alternate between positive and negative is called an alternating series. The nth term
of an alternating series is of the form

an = (−1)n+1bn or an = (−1)nbn

where bn = |an| is a positive number.

The Alternating Series Test: The series

∞∑
n=1

(−1)n+1bn = b1 − b2 + b3 − b4 + · · · , bn > 0,

converges if the following two conditions are satisfied:

• bn ≥ bn+1 for all n ≥ N , for some integer N ,

• lim
n→∞

bn = 0.

Example 1: The alternating harmonic series

∞∑
n=1

(−1)n+1 1
n

= 1− 1
2 + 1

3 −
1
4 + · · ·

clearly satisfies the requirements with N = 1 and therefore converges.

Instead of verifying bn ≥ bn+1, we can follow the steps we did in the integral test to verify the sequence is decreasing.
Define a differentiable function f(x) satisfying f(n) = bn. If f ′(x) ≤ 0 for all x greater than or equal to some positive
integer N , then f(x) is non-increasing for x ≥ N . It follows that f(n) ≥ f(n + 1), or bn ≥ bn+1 for all N .

Example 2: Consider the sequence where bn == 10n

n2 + 16 . Define f(x) = 10x

x2 + 16 . Then f ′(x) = 10(16− x2)
(x2 + 16) ≥ 0 when

x ≥ 4. It follows that bn ≥ bn+1 for n ≥ 4.

The Alternating Series Test Estimation Theorem: If the alternating series
∞∑

n=1
(−1)n+1bn satisfies the conditions of

the AST, then for n ≥ N ,

Sn = b1 − b2 + b3 − b4 + · · ·+ (−1)n+1bn

approximates the sum L of the series with an error whose absolute value is less than bn+1, the absolute value of the first
unused term.
Furthermore, the sum L lies between any two successive partial sums Sn and Sn+1, and the remainder, L− Sn, has the
same sign as the first unused term.
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Example 3: Let’s apply the Estimation Theorem on a series whose sum we know:

∞∑
n=0

(−1)n 1
2n

= 1− 1
2 + 1

4 −
1
8 + 1

16 −
1
32 + 1

64 −
1

128 + 1
256 − · · · =

1
1−

(
− 1

2
) = 2

3 .

n Sum Sn L− Sn

0 1 1 − 1
3

1 1− 1
2

1
2

1
6

2 1− 1
2 + 1

4
3
4 − 1

12

3 1− 1
2 + 1

4 −
1
8

5
8

1
24

4 1− 1
2 + 1

4 −
1
8 + 1

16
11
16 − 1

48

5 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32
21
32

1
96

6 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32 + 1
64

43
64 − 1

192

7 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32 + 1
64 −

1
128

85
128

1
384

8 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32 + 1
64 −

1
128 + 1

256
171
256 − 1

768

Example 4 - Conditional Convergence: We have seen that in absolute value, the Alternating Harmonic Series diverges.
The presence of infinitely many negative terms is essential to its convergence. We say the Alternating Harmonic Series if
conditionally convergent. We can extend this idea to the alternating p-series.
If p is a positive constant, the sequence 1

np
is a decreasing sequence with limit zero. Therefore, the alternating p-series

∞∑
n=1

(−1)n+1

np
= 1− 1

2p
+ 1

3p
− 1

4p
+ · · · , p > 0

converges.

• If p > 1, the series converges absolutely.

• If 0 < p ≤ 1, the series converges conditionally.

The Rearrangement Theorem for Absolutely Convergent Series: If
∑

an converges absolutely and b1, b2, . . . , bn . . .

is any arrangement of the sequence {an}, then
∑

bn converges absolutely and

∑
bn =

∑
an.

Example 5: We know
∞∑

n=1

(−1)n+1

n
converges to some number L.

By the Estimation Theorem, we know L 6= 0 (our partial sums never “hop” over 0). So,

2L = 2
(

1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

)
= 2− 1 + 2

3 −
1
2 + 2

5 −
1
3 + 2

7 −
1
4 + · · ·

= (2− 1)− 1
2 +

(
2
3 −

1
3

)
− 1

4 +
(

2
5 −

1
5

)
− 1

6 + · · · (group all the terms with odd denominators together,
leaving the even denominator terms alone)

= 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

= L

So 2L = L . . . so L = 0? But L 6= 0 . . . oops. Thus we cannot rearrange the sum in a conditionally convergent sequence.
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