Section 10.5: Absolute Convergence & the
Ratio and Root Tests

When the terms of a series are positive and negative, the series may or may not converge.

Example 1: Consider the series

1 1
This is a geometric series with |r| = ‘—4’ =1 < 1, so it converges.

Example 2: Now consider
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This is a geometric series with |r = '—4‘ = — > 1, so it diverges.
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The Absolute Convergence Test:
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It E |ay| converges, then E a, converges.
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Definitions: A series Z a, converges absolutely (or is absolutely convergent) if the corresponding series of absolute
values Z |an|, converges. Thus, if a series is absolutely convergent, it must also be convergent. We call a series condi-
tionally convergent if Z a, converges but Z |an| diverges.
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Example 3: Consider E (—1)"+1—2.
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E la,| = E — converges since it is a p-series with p =2 > 1,
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ap, = (71)’”1? = |a,| = 3
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SO Z an converges absolutely
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The Ratio Test: Let Z an be any series and suppose
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Then we have the following;:

e If L <1, then Z an converges absolutely.
o If L >1 (including L = o0), then Z an diverges.

e If L =1, we can make no conclusion about the series using this test.
Example 4: Use the Ratio Test to decide whether the series
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converges absolutely, is conditionally convergent or diverges.
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So, Z m converges absolutely by the Ratio Test.
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Example 5: Use the Ratio Test to decide whether the series
2
converges absolutely, is conditionally convergent or diverges.
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’ The ratio test is super useful for factorials ‘
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The Root Test: Let Z an, be any series and suppose

lim {/|a,|= L.
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Then we have the following:

o If L <1, then Z an converges absolutely.

e If L > 1 (including L = o0), then Z ay, diverges.

e If L =1, we can make no conclusion about the series using this test.

Example 6: Use the Root Test to determine whether the series
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converges absolutely, is conditionally convergent, or diverges.
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So, Z on converges absolutely by the Root Test. The ratio test is super useful for a™
n=1
lim ¢/n = lim ™V = elimnoo e I im0 0 g

n—roo n—roo

Page 3 of



	10.5: Absolute Convergence & the Ratio and Root Tests

