
Section 10.5: Absolute Convergence & the
Ratio and Root Tests

When the terms of a series are positive and negative, the series may or may not converge.

Example 1: Consider the series

5− 5
4 + 5

16 −
5
64 + · · · =

∞∑
n=0

5
(
−1

4

)n

.

This is a geometric series with |r| =
∣∣∣∣−1

4

∣∣∣∣ = 1
4 < 1, so it converges.

Example 2: Now consider

1− 5
4 + 25

16 −
125
64 + · · · =

∞∑
n=0

(
−5

4

)n

.

This is a geometric series with |r =
∣∣∣∣−5

4

∣∣∣∣ = 5
4 > 1, so it diverges.

The Absolute Convergence Test:

If
∞∑

n=0
|an| converges, then

∞∑
n=0

an converges.

Definitions: A series
∑

an converges absolutely (or is absolutely convergent) if the corresponding series of absolute
values

∑
|an|, converges. Thus, if a series is absolutely convergent, it must also be convergent. We call a series condi-

tionally convergent if
∑

an converges but
∑
|an| diverges.

Example 3: Consider
∞∑

n=1
(−1)n+1 1

n2 .

an = (−1)n+1 1
n2 =⇒ |an| =

1
n2 :

∞∑
n=1
|an| =

∞∑
n=1

1
n2 converges since it is a p-series with p = 2 > 1,

so
∞∑

n=1
an converges absolutely
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The Ratio Test: Let
∑

an be any series and suppose

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

Then we have the following:

• If L < 1, then
∑

an converges absolutely.

• If L > 1 (including L =∞), then
∑

an diverges.

• If L = 1, we can make no conclusion about the series using this test.

Example 4: Use the Ratio Test to decide whether the series

∞∑
n=0

2n + 5
3n

converges absolutely, is conditionally convergent or diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 2n+1+5
3n+1

2n+5
3n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1 + 5
3n+1 · 3n

2n + 5

∣∣∣∣
= lim

n→∞

∣∣∣∣ 2n+1 + 5
3 (2n + 5)

∣∣∣∣
= 1

3 lim
n→∞

2n+1 + 5
2n + 5

= 1
3 lim

n→∞

2 + 5
2n

1 + 5
2n

= 2
3 < 1

So,
∞∑

n=0

2n + 5
3n

converges absolutely by the Ratio Test.

Example 5: Use the Ratio Test to decide whether the series

∞∑
n=1

(2n)!
(n!)2

converges absolutely, is conditionally convergent or diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2(n + 1))!
((n + 1)!)2 ·

(n!)2

(2n)!

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2n + 2)!
(n + 1)! · (n + 1)! ·

n! · n!
(2n)!

∣∣∣∣
= lim

n→∞

∣∣∣∣ (2n + 2) · (2n + 1) ·���(2n)!
(n + 1) ·��n! · (n + 1) ·��n! ·

��n! ·��n!
���(2n)!

∣∣∣∣
= lim

n→∞

(2n + 2)(2n + 1)
(n + 1)(n + 1)

= lim
n→∞

(
2 + 2

n

) (
2 + 1

n

)(
1 + 1

n

) (
1 + 1

n

)
= 4 > 1

So,
∞∑

n=1

(2n)!
(n!)2 diverges by the Ratio Test. The ratio test is super useful for factorials
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The Root Test: Let
∑

an be any series and suppose

lim
n→∞

n
√
|an| = L.

Then we have the following:

• If L < 1, then
∑

an converges absolutely.

• If L > 1 (including L =∞), then
∑

an diverges.

• If L = 1, we can make no conclusion about the series using this test.

Example 6: Use the Root Test to determine whether the series

∞∑
n=1

n2

2n

converges absolutely, is conditionally convergent, or diverges.

lim
n→∞

n
√

an = lim
n→∞

n

√∣∣∣∣n2

2n

∣∣∣∣ = lim
n→∞

n
√

n2

2

= lim
n→∞

( n
√

n)2

2

= 12

2
= 1

2 < 1

So,
∞∑

n=1

n2

2n
converges absolutely by the Root Test. The ratio test is super useful for an

lim
n→∞

n
√

n = lim
n→∞

eln( n
√

n) = elimn→∞
ln(n)

n
L’H= elimn→∞

1/n
1 = e0 = 1
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