
Section 10.3: The Integral Test

Tests for Convergence: The most basic question we can ask about a series is whether or not it converges. In the next
few sections we will build the tools necessary to answer that question. If we establish that a series does converge, we
generally do not have a formula for its sum (unlike the case for Geometric Series). So, for a convergent series we need to
investigate the error involved when using a partial sum to approximate its total sum.

Non-decreasing Partial Sums: Suppose
∞∑

n=1
an is an infinite series with an ≥ 0 for all n. Then each partial sum is

greater than or equal to its predecessor since Sn+1 = Sn + an+1, so

S1 ≤ S2 ≤ S3 ≤ · · · ≤ Sn ≤ Sn+1 ≤ . . .

Since the partial sums form a non-decreasing sequence, the Monotone Convergence Theorem give us the following result:

Corollary Of MCT: A series
∞∑

n=1
an of non-negative terms converges if and only if its partial sums are bounded from above.

Example 1: Consider the harmonic series

∞∑
n=1

1
n
.

nth term test:

lim
n→∞

1
n

= 0 =⇒ nth term test is inconclusive.

Note however,

∞∑
n=1

1
n

= 1 + 1
2︸ ︷︷ ︸

3
2

+ 1
3 + 1

4︸ ︷︷ ︸
> 2

4 = 1
2

+ 1
5 + 1

6 + 1
7 + 1

8︸ ︷︷ ︸
> 4

8 = 1
2

+ 1
9 + 1

10 + 1
11 + 1

12 + 1
13 + 1

14 + 1
15 + 1

16︸ ︷︷ ︸
> 8

16 = 1
2

+ · · ·

In general, the sum of 2n terms ending with 1
2n+1 is greater than 1

2 . If n = 2k, the sum Sn is greater than k

2 , so Sn is not
bounded from above. So the Harmonic Series diverges. Another way of seeing this is

S2k = 1 + 1
2 + 1

3 + · · ·+ 1
2k

>
k

2
k→∞−→ ∞,

so then Sn −→∞ and the series diverges.

We now introduce the Integral Test with a series that is related to the harmonic series, but whose nth term is 1/n2 instead
of 1/n.
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Example 2: Does the following series converge?

∞∑
n=1

1
n2 .

We will compare the series to
ˆ ∞

1

1
x2 dx.

Sn = 1
12 + 1

22 + · · ·+ 1
n2

= f(1) + f(2) + · · ·+ f(n)

< f(1) +
ˆ n

1

1
x2 dx

< f(1) +
ˆ ∞

1

1
x2 dx

= 1 + 1

= 2 1 2 3 4 5

Since the partial sums are bounded above by 2, the sum converges.

The Integral Test: Let {an}∞n=1 be a sequence of positive terms. Suppose that there is a positive integer N such that for

all n ≥ N , an = f(n), where f(x) is a positive , continuous , decreasing

function of x. Then the series
∞∑

n= N

an and the integral
ˆ ∞

N

f(x) dx both converge or diverge.

Example 3: Show that the p-series

∞∑
n=1

1
np

= 1
1p

+ 1
2p

+ 1
3p

+ · · ·+ 1
np

+ · · · ,

(where p is a real constant) converges if p > 1 and diverges if p ≤ 1.

If p > 1 then f(x) = 1
xp

is a positive, continuous, decreasing function of x. Since
ˆ ∞

1
f(x) dx = 1

p− 1 , the series converges

by the Integral Test. Note that the sum of this series is not generally 1
p− 1 . If p ≤ 0, the sum diverges by the nth term

test. If 0 < p < 1 then 1− p > 0 and

ˆ ∞
1

1
xp

dx = lim
b→∞

ˆ b

1

1
xp

dx = 1
p− 1

(
lim

b→∞
b1−p − 1

)
=∞.

Example 4: Determine the convergence of divergence of the series

∞∑
n=1

ne−n2
.

f(x) = xe−x2 is positive, continuous, decreasing and f(n) = an for all n. Further,

ˆ ∞
1

xe−x2
dx = lim

b→∞

ˆ b

1
xe−x2

dx = 1
2 lim

b→∞

[
−e−b2

− (−e−1)
]

= 1
2e .

Since the integral converges, the series also converges.
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Error Estimation: For some convergent series, such as a geometric series or the telescoping series, we can actually
find the total sum of the series. For most convergent series, however, we cannot easily find the total sum. Neverthe-
less, we can estimate the sum by adding the first n terms to get Sn, but we need to know how far off Sn is from the total sum S.

Suppose a series
∑

an is shown to be convergent by the integral test and we want to estimate the size of the remainder
Rn measuring the difference between the total sum S and its nth partial sum Sn.

Rn = S − Sn = an+1 + an+1 + an+1 + · · ·

Lower Bound: Shift the integral test function left 1 unit.

1 2 3 4 5

Rn ≥
ˆ ∞

n+1
f(x) dx

Upper Bound: The integral test function.

1 2 3 4 5

Rn ≤
ˆ ∞

n

f(x) dx

Bound for the Remainder in the Integral Test: Suppose {an}∞n=1 is a sequence of positive terms with ak = f(k),

where f(x) is a continuous positive decreasing function of x for all x ≥ n and that
∞∑

k=1
ak converges to S. Then the

remainder Rn = R− Sn satisfies the inequalities
ˆ ∞

n+1
f(x) dx ≤ Rn ≤

ˆ ∞
n

f(x) dx.

Example 5: Estimate the sum, S, of the series
∞∑

n=1

1
n2 with n = 10.

ˆ ∞
n

1
x2 dx = lim

b→∞

ˆ b

n

1
x2 dx = lim

b→∞

[
− 1
x

]b

n

= lim
b→∞

[
−1
b

+ 1
n

]
= 1
n

=⇒ S10 + 1
11 ≤ S ≤ S10 + 1

10

S10 = 1 + 1
4 + 1

9 + ·+ 1
100 ≈ 1.54977 =⇒ 1.64068 ≤ S ≤ 1.64977

It seems reasonable that taking the midpoint of this interval would give a good estimate, so

S ≈ 1.6452.

It turns out that using fancy advanced calculus (Fourier Analysis) we actually know that

S =
∞∑

n=1

1
n2 = π2

6 ≈ 1.64493.
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