
Section 10.2: Infinite Series

Sum of an Infinite Sequence: An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + · · ·+ an + · · · .

The goal of this section is to understand the meaning of such an infinite sum and to develop methods to calculate it. Since
there are infinitely many terms to add in an infinite series, we cannot just keep adding to see what comes out. Instead, we
look at the result of summing the first n terms of the sequences,

Sn := a1 + a2 + a3 + · · ·+ an.

Sn is called the nth partial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting value
in the same sense as the terms of a sequence approach a limit.

Example 1: To assign meaning to an expression like

1 + 1
2 + 1

4 + 1
8 + 1

16 + · · ·

we add the terms one at a time from the beginning to look for a pattern in how these partial sums grow:

Partial Sum Value

First: S1 = 1 1 = 21 − 1
21−1

Second: S2 = 1 + 1
2

3
2 = 22 − 1

22−1

Third: S3 = 1 + 1
2 + 1

4
7
4 = 23 − 1

23−1

...
...

...

nth: Sn = 1 + 1
2 + 1

4 + · · ·+ 1
2n−1

2n − 1
2n−1

S = lim
n→∞

Sn = lim
n→∞

2n − 1
2n−1 = lim

n→∞

(
2n

2n−1 −
1

2n−1

)
= lim

n→∞

(
2− 1

2n−1

)
2.

Since the sequence of partial sums converges, the infinite series converges. That is,

∞∑
n=1

1
2n−1 = 1 + 1

2 + 1
4 + 1

8 + 1
16 + · · · = 2.
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Definitions: Given a sequence of numbers {an}∞n=1, an expression of the form

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · ·

is an infinite series . The number an is the nth term of the series. The sequence {Sn}∞n=1

defined by

Sn :=
n∑

n=1
an = a1 + a2 + a3 + · · ·+ an

is called the sequence of partial sums of the series, the number Sn being the nth partial sum .

If the sequence of partial sums converges to a limit L, we say that the series converges and that the

sum is L. In this case we write

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · · = L.

If the sequence of partial sums of the series does not converge, we say that the series diverges .

Notation: Sometimes it is nicer, or even more beneficial, to consider sums starting at n = 0 instead. For example, we can
rewrite the series in Example 1 as

∞∑
n=1

1
2n−1 =

∞∑
n=0

1
2n

.

At times it may also be nicer to start indexing at some number other than n = 0 or n = 1. This idea is called re-indexing
the series (or sequence). So don’t be alarmed if you come across series that do not start at n = 1.

Geometric Series: A geometric series is of the form

a + ar + ar2 + ar3 + · · ·+ arn + · · · =
∞∑

n=1
arn−1=

∞∑
n=0

arn

in which a and r are fixed real numbers and a 6= 0. The ratio r can be positive (as in Example 1) or
negative, as in

1− 1
3 + 1

9 −
1
27 + · · ·+

(
−1

3

)n−1
+ · · · =

∞∑
n=1

(
−1

3

)n−1
.

If r = 1, the nth partial sum of the geometric series is

Sn = aa(1) + a(1)2 + a(1)3 + · · ·+ a(1)n−1 = na

and the series diverges since lim
n→∞

Sn = lim
n→∞

na = ±∞ (depending on the sign of a).
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If r = −1, the series diverges since the nth partial sums alternate between a and 0.

S1 = a, S2 = a + a(−1) = 0, a + a(−1) = a(−1)2 = a, . . .

If |r| 6= 1, then we use the following “trick”:

Sn = a + ar + ar2 + · · ·+ srn−1

=⇒ rSn = ar + ar2 + ar3 + · · ·+ arn

=⇒Sn − rSn = a− arn

=⇒ Sn = a− arn

1− r
= a(1− rn)

1− r
.

If |r| < 1 then rn −→ 0 as n −→∞, so Sn −→
a

1− r
. If |r| > 1 then |rn| −→ ∞ as n −→∞ and the series diverges.

Convergence of Geometric Series: If |r| < 1, the geometric series a + ar + ar2 + · · · arn−1 + · · · converges:

∞∑
n=1

arn−1 = a

1− r
, |r| < 1.

If |r| ≥ 1, the series diverges.

Example 2: Consider the series
∞∑

n=0

(−1)n5
4n

.

∞∑
n=0

(−1)n5
4n

=
∞∑

n=1

(−1)n−15
4n−1 =

∞∑
n=1

5
(
−1

4

)n−1
.

So this series is a geometric series with a = 5 and r = −1
4 . Since |r| < 1 the series converges and so,

∞∑
n=1

5
(
−1

4

)n−1
= 5

1−
(
− 1

4
) = 4

Example 3: Express the repeating decimal 5.232323 . . . as the ratio of two integers.

5.232323 . . . = 5 + 23
100 + 23

1002 + 23
1003 + · · ·

= 5 + 23
100

(
1 + 1

100 + 1
1002 + · · ·

)
= 5 + 23

100

∞∑
n=1

(
1

100

)n−1
a = 1, r = 1

100

= 5 + 23
100

(
1

1− 1
100

)
= 5 + 23

100 ·
100
99

= 518
99
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Example 4: Find the sum of the telescoping series

∞∑
n=1

1
n(n + 1) .

If we take the partial sum decomposition, ∑
n=1

1
n(n + 1) =

∞∑
n=1

(
1
n
− 1

n + 1

)
,

then its easy to see that the partial sums are,

Sn =
(

1−
�
��1
2

)
+
(
�
��1
2 − �

��1
3

)
+
(
�
��1
3 − �

��1
4

)
+ · · ·+

(
�
��1
n
− 1

n + 1

)
= 1− 1

n + 1
n→∞−→ 1.

Since the sequence of partial sums converges, the series converges and so
∞∑

n=1

1
n(n + 1) = 1

Theorem: If the series
∞∑

n=1
an converges, then lim

n→∞
an = 0.

Suppose {Sn}∞n=1 converges to L. Then note that {Sn+1}∞n=1 also converges to L. So then,

0 = L− L = lim
n→∞

Sn+1 − lim
n→∞

Sn = lim
n→∞

(Sn+1 − Sn) = lim
n→∞

an+1 = lim
n→∞

an.

SUPER IMPORTANT NOTE: This theorem does NOT say that if lim
n→∞

an = 0 then
∑∞

n=1 an converges.

The nth Term Test for Divergence: The series
∞∑

n=1
an diverges if lim

n→∞
an fails to exist or is different from zero.

SUPER IMPORTANT NOTE: This theorem does NOT say that if lim
n→∞

an = 0 then
∑∞

n=1 an converges.

1.
∞∑

n=1
n2 diverges since lim

n→∞
n2 =∞.

2.
∞∑

n=1

n + 1
n

diverges since lim
n→∞

n + 1
n

= 1 6= 0.

3.
∞∑

n=1
(−1)n+1 diverges since lim

n→∞
(−1)n+1 does not exist.

Combining Series: If
∑

an = A and bn = B, then

1) Sum Rule :
∞∑

n=1
(an + bn) = A + B, 2) Constant Multiple Rule :

∞∑
n=1

can= cA, for any c ∈ R.

Some True Facts:

1. Every non-zero constant multiple of a divergent series diverges.

2. If
∑

an converges and
∑

bn diverges, then
∑

(an ± bn) diverges.

Caution!
∑

(an + bn) can converge when both
∑

an and
∑

bn diverge!.


∑∞

n=1 1 diverges∑∞
n=1(−1) diverges∑∞
n=1 (1 + (−1)) = 0

Adding/Deleting Terms: Adding/deleting a finite number of terms will not alter the convergence or divergence of a
series.
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