
Section 10.1: Sequences

Definition: A sequence is a list of numbers written in a specific order. We index them with positive integers,

a1, a2, a3, a4, . . . , an, . . . .

The order is important here, for example 2, 4, 6, 8, . . . is not the same as 4, 2, 6, 8, . . . .

A sequence may be finite or infinite. We will be looking specifically at infinite sequences which we will denote by {an}∞n=1.

Examples:

(a)
{

n

n + 1

}∞
n=1

a1 = 1
1 + 1 = 1

2, a2 = 2
2 + 1 = 2

3, a3 = 3
3 + 1 = 3

4, . . .

(b)
{

(−1)n(n + 1)
3n

}∞
n=1

a1 = (−1)1(1 + 1)
31 = −2

3 , a2 = (−1)2(2 + 1)
32 = 1

3, a3 = (−1)3(3 + 1)
33 = −4

27 , . . .

(c) Fibonacci Sequence: (a recursively defined sequence)
f1 = 1

f2 = 1

fn = fn−1 + fn−2, n ≥ 3

f3 = f2 + f1 = 1 + 1 = 2,

f4 = f3 + f2 = 2 + 1 = 3,

f5 = f4 + f3 = 3 + 2 = 5,

f6 = f5 + f4 = 5 + 3 = 8, . . .

Definition: (Precise Definition of a Limit of a Sequence) The sequence {an}∞n=1 converges to the number L if for
every ε > 0 there exists an integer N such that

for all n ≥ N |an − L| < ε.

If no such number L exists, we say that {an} diverges.

Definition: (Friendly Definition of a Limit of a Sequence) The sequence {an}∞n=1 converges to the number L if

lim
n→∞

an = L.

If no such number L exists, we say that {an} diverges.
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Visualising a Sequence: Plot the sequence
{

1
n

}∞
n=1

in R2. What do you notice?

an

n

1

1
2
1
3 ...

1 2 3 4 5 6 7 8 9 10

From the plot above it looks as if the sequence is tending towards 0. It seems that plotting sequences looks a lot like
plotting a function. In fact, we can use our knowledge of functions to infer things about sequences.

Theorem: (Continuous Function Theorem) If limx→∞ f(x) = L and f(n) = an whenever n is a positive integer, then
limn→∞ an = L.

We know that f(x) = 1
x satisfies f(n) = an for every positive integer n, so then

lim
n→∞

1
n

= lim
x→∞

1
x

= 0.

In truth, the limit of this sequence is clear without invoking the power of this theorem. But, the theorem is still a great
tool that we can use for more complicated sequences.

Definition: limn→∞ an =∞ means that for every positive integer M , there exists an integer N such that if n ≥ N , then
an > M .

Limit Rules for Sequences: (i.e. the limit rules you already know for functions)
If an −→ L, bn −→M , then:

1. Sum Rule: lim
n→∞

(an + bn) = L + M ,

2. Constant Rule: lim
n→∞

c = c for any c ∈ R,

3. Product Rule: lim
n→∞

an · bn = L ·M ,

4. Quotient Rule: lim
n→∞

an

bn
= L

M
, if M 6= 0

5. Power Rule: lim
n→∞

ap
n = Lp, if p > 0, an > 0

Squeeze Theorem: Let {an}∞n=1, {bn}∞n=1 and {cn}∞n=1 be three sequences such that there exists a positive integer N

where

an ≤ bn ≤ cn, for each n ≥ N, and lim
n→∞

an = lim
n→∞

cn = L.

Then lim
n→∞

bn = L.
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Theorem: If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Examples of Convergent Sequences:

1.
{

n

n + 1

}∞
n=1

lim
n→∞

n

n + 1 = lim
n→∞

n + 1− 1
n + 1 = lim

n→∞
1− 1

n + 1 = 1

2.
{

ln(n)
n

}∞
n=1

Note that f(x) := ln(x)
x

satisfies f(n) = an for each positive integer n. So,

lim
n→∞

ln(n)
n

= lim
x→∞

ln(x)
x

L’H= lim
x→∞

1/x

1 = 0

3.
{

cos(n)
n

}∞
n=1

Since −1 ≤ cos(n) ≤ 1 for all n ∈ N, we have − 1
n
≤ cos(n)

n
≤ 1

n
and since

lim
n→∞

− 1
n

= lim
n→∞

1
n

= 0,

we have lim
n→∞

cos(n)
n

= 0, by the Squeeze Theorem.

4.
{

(−1)n

n

}

lim
n→∞

∣∣∣∣ (−1)n

n

∣∣∣∣ = lim
n→∞

1
n

= 0,

so,

lim
n→∞

(−1)n

n
= 0

Examples of Divergent Sequences:

1. {(−1)n}∞n=1

2. {(−1)nn}∞n=1

3. {sin(n)}∞n=1
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Definition: The product of the first n positive integers,

n · (n− 1) · (n− 2) · · · 5 · 4 · 3 · 2 · 1,

is denoted by n! (read n factorial.

Convention: 0! = 1

Example 1: Find the limit of the sequence
{

n!
nn

}∞
n=1

.

Observe,

a1 = 1!
11 = 1

1 ≤
1
1

a2 = 2!
22 = 2 · 1

2 · 2 = 2
2 ·

1
2 ≤

1
2

a3 = 3!
33 = 3 · 2 · 1

3 · 3 · 3 = 3
3 ·

2
3︸ ︷︷ ︸

≤1

· 1
3 ≤

1
3

...

an = n!
nn

= n · (n− 1) · (n− 2) · · · 2 · 1
n · n · n · · ·n · n

= n

n
· n− 1

n
· n− 2

n
· · · 2

n︸ ︷︷ ︸
≤1

· 1
n
≤ 1

n

So we have 0 ≤ an ≤
1
n
, so by the Squeeze Theorem lim

n→∞
an = 0.

Example 2: For what values of r is the sequence {rn}∞n=1 convergent?

• If r > 1, lim
n→∞

rn =∞

• If r = 1, lim
n→∞

rn = 1

• If 0 < r < 1, lim
n→∞

rn = 0

• If r = 0, lim
n→∞

rn = 0

• If −1 < r < 0, lim
n→∞

rn = 0

• If r ≤ −1, {rn}∞n=1 diverges
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Definitions: Two concepts that play a key role in determining the convergence of a sequence are those of a bounded
sequences and a monotonic sequence.

(a) A sequence {an}∞n=1 is bounded from above if there exists a number M such that an ≤M for all n.

The number M is an upper bound for {an}∞n=1.

If M is an upper bound for {an}∞n=1 but no number less than M is an upper bound for {an}∞n=1, then M is the

least upper bound (supremum) of {an}n=1∞.

(b) A sequence {an}∞n=1 is bounded from below if there exists a number m such that an ≥ m for all n.

The number m is a lower bound for {an}∞n=1.

If m is a lower bound for {an}∞n=1 but no number greater than m is a lower bound for {an}∞n=1, then m is the

greatest lower bound (infimum) of {an}n=1∞.

(c) Completeness Axiom: If S is any non-empty set of real numbers that has an upper bound M , then S has a least
upper bound b. Similarly for least upper bound.

(d) If {an}∞n=1 is bounded from above and below then {an}∞n=1 is bounded .

If {an}∞n=1 is not bounded, then we say that {an}∞n=1 is an unbounded sequence.

(e) Every convergent sequence is bounded but not every bounded sequence

converges . (consider an = (−1)n ).

(f) A sequence {an}∞n=1 is non-decreasing if an ≤ an+1 for every n.

A sequence {an}∞n=1 is non-increasing if an ≥ an+1 for every n.

A sequence {an}∞n=1 is monotonic if it is either non-decreasing or non-increasing.

The Monotone Convergence Theorem: Every bounded, monotonic sequence converges.

Note: The Monotone Convergence Theorem ONLY tells us that the limit exists, NOT the value of the limit. It also tells
us that a non-decreasing sequence converges when it is bounded from above, but diverges to infinity otherwise.
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Example 3: Does the following recursive sequence converge?

a1 = 2, an+1 = 1
2(an + 6).

a1 = 2, a2 = 1
2(2 + 6) = 4, a3 = 1

2(4 + 6) = 5,
11
2 ,

23
4 , . . . .

It seems that the sequence is increasing. Lets prove this by induction. Suppose that ak−1 > ak for some k > 2. If we can
show ak+1 > ak then we are done. Indeed,

ak−1 < ak =⇒ ak−1 + 6 < ak + 6 =⇒ ak = 1
2(ak−1 + 6) <

1
2(ak + 6) = ak+1.

Thus {an}∞n=1 is an increasing sequence. If we show that the sequence is bounded we can use the Monotone Convergence
Theorem. We know that it is bounded below by 2, since we just showed it was an increasing sequence. Note too that, at
least for the ones we checked, ak < 6. So,

ak+1 = 1
2 (ak + 6) <

1
2(6 + 6) = 6.

So we have {an}∞n=1 is bounded above by 6. So, by the Monotone Convergence Theorem {an}∞n=1 converges.

To find the limit, let L := limn→∞ an. Then,

L = lim
n→∞

an+1 = lim
n→∞

1
2(an + 6) = 1

2(L + 6) =⇒ 2L = L + 6 =⇒ L = 6.

So lim
n→∞

an = 6.
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