
Section 10.1: Sequences

Definition: A sequence is a list of numbers written in a specific order. We index them with positive integers,

a1, a2, a3, a4, . . . , an, . . . .

The order is important here, for example 2, 4, 6, 8, . . . is not the same as 4, 2, 6, 8, . . . .

A sequence may be finite or infinite. We will be looking specifically at infinite sequences which we will denote by {an}∞n=1.

Examples:

(a)
{

n

n+ 1

}∞
n=1

a1 = 1
1 + 1 = 1

2, a2 = 2
2 + 1 = 2

3, a3 = 3
3 + 1 = 3

4, . . .

(b)
{

(−1)n(n+ 1)
3n

}∞
n=1

a1 = (−1)1(1 + 1)
31 = −2

3 , a2 = (−1)2(2 + 1)
32 = 1

3, a3 = (−1)3(3 + 1)
33 = −4

27 , . . .

(c) Fibonacci Sequence: (a recursively defined sequence)
f1 = 1

f2 = 1

fn = fn−1 + fn−2, n ≥ 3

f3 = f2 + f1 = 1 + 1 = 2,
f4 = f3 + f2 = 2 + 1 = 3,
f5 = f4 + f3 = 3 + 2 = 5,
f6 = f5 + f4 = 5 + 3 = 8, . . .

Definition: (Precise Definition of a Limit of a Sequence) The sequence {an}∞n=1 converges to the number L if for
every ε > 0 there exists an integer N such that

for all n ≥ N |an − L| < ε.

If no such number L exists, we say that {an} diverges.

Definition: (Friendly Definition of a Limit of a Sequence) The sequence {an}∞n=1 converges to the number L if

lim
n→∞

an = L.

If no such number L exists, we say that {an} diverges.



Section 10.1: Sequences MATH 142

Visualising a Sequence: Plot the sequence
{

1
n

}∞
n=1

in R2. What do you notice?

an

n

1

1
2
1
3 ...

1 2 3 4 5 6 7 8 9 10

From the plot above it looks as if the sequence is tending towards 0. It seems that plotting sequences looks a lot like
plotting a function. In fact, we can use our knowledge of functions to infer things about sequences.

Theorem: (Continuous Function Theorem) If limx→∞ f(x) = L and f(n) = an whenever n is a positive integer, then
limn→∞ an = L.

We know that f(x) = 1
x satisfies f(n) = an for every positive integer n, so then

lim
n→∞

1
n

= lim
x→∞

1
x

= 0.

In truth, the limit of this sequence is clear without invoking the power of this theorem. But, the theorem is still a great
tool that we can use for more complicated sequences.

Definition: limn→∞ an =∞ means that for every positive integer M , there exists an integer N such that if n ≥ N , then
an > M .

Limit Rules for Sequences: (i.e. the limit rules you already know for functions)
If an −→ L, bn −→M , then:

1. Sum Rule: lim
n→∞

(an + bn) = L+M ,

2. Constant Rule: lim
n→∞

c = c for any c ∈ R,

3. Product Rule: lim
n→∞

an · bn = L ·M ,

4. Quotient Rule: lim
n→∞

an
bn

= L

M
, if M 6= 0

5. Power Rule: lim
n→∞

apn = Lp, if p > 0, an > 0

Squeeze Theorem: Let {an}∞n=1, {bn}
∞
n=1 and {cn}∞n=1 be three sequences such that there exists a positive integer N

where

an ≤ bn ≤ cn, for each n ≥ N, and lim
n→∞

an = lim
n→∞

cn = L.

Then lim
n→∞

bn = L.
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Theorem: If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Examples of Convergent Sequences:

1.
{

n

n+ 1

}∞
n=1

lim
n→∞

n

n+ 1 = lim
n→∞

n+ 1− 1
n+ 1 = lim

n→∞
1− 1

n+ 1 = 1

2.
{

ln(n)
n

}∞
n=1

Note that f(x) := ln(x)
x

satisfies f(n) = an for each positive integer n. So,

lim
n→∞

ln(n)
n

= lim
x→∞

ln(x)
x

L’H= lim
x→∞

1/x
1 = 0

3.
{

cos(n)
n

}∞
n=1

Since −1 ≤ cos(n) ≤ 1 for all n ∈ N, we have − 1
n
≤ cos(n)

n
≤ 1
n

and since

lim
n→∞

− 1
n

= lim
n→∞

1
n

= 0,

we have lim
n→∞

cos(n)
n

= 0, by the Squeeze Theorem.

4.
{

(−1)n
n

}

lim
n→∞

∣∣∣∣ (−1)n
n

∣∣∣∣ = lim
n→∞

1
n

= 0,

so,

lim
n→∞

(−1)n
n

= 0

Examples of Divergent Sequences:

1. {(−1)n}∞n=1

2. {(−1)nn}∞n=1

3. {sin(n)}∞n=1
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Definition: The product of the first n positive integers,

n · (n− 1) · (n− 2) · · · 5 · 4 · 3 · 2 · 1,

is denoted by n! (read n factorial.)

Convention: 0! = 1

Example 1: Find the limit of the sequence
{
n!
nn

}∞
n=1

.

Observe,

a1 = 1!
11 = 1

1 ≤
1
1

a2 = 2!
22 = 2 · 1

2 · 2 = 2
2 ·

1
2 ≤

1
2

a3 = 3!
33 = 3 · 2 · 1

3 · 3 · 3 = 3
3 ·

2
3︸ ︷︷ ︸

≤1

· 1
3 ≤

1
3

...

an = n!
nn

= n · (n− 1) · (n− 2) · · · 2 · 1
n · n · n · · ·n · n

= n

n
· n− 1

n
· n− 2

n
· · · 2

n︸ ︷︷ ︸
≤1

· 1
n
≤ 1
n

So we have 0 ≤ an ≤
1
n
, so by the Squeeze Theorem lim

n→∞
an = 0.

Example 2: For what values of r is the sequence {rn}∞n=1 convergent?

• If r > 1, lim
n→∞

rn =∞

• If r = 1, lim
n→∞

rn = 1

• If 0 < r < 1, lim
n→∞

rn = 0

• If r = 0, lim
n→∞

rn = 0

• If −1 < r < 0, lim
n→∞

rn = 0

• If r ≤ −1, {rn}∞n=1 diverges
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Definitions: Two concepts that play a key role in determining the convergence of a sequence are those of a bounded
sequences and a monotonic sequence.

(a) A sequence {an}∞n=1 is bounded from above if there exists a number M such that an ≤M for all n.

The number M is an upper bound for {an}∞n=1.

If M is an upper bound for {an}∞n=1 but no number less than M is an upper bound for {an}∞n=1, then M is the

least upper bound (supremum) of {an}n=1∞.

(b) A sequence {an}∞n=1 is bounded from below if there exists a number m such that an ≥ m for all n.

The number m is a lower bound for {an}∞n=1.

If m is a lower bound for {an}∞n=1 but no number greater than m is a lower bound for {an}∞n=1, then m is the

greatest lower bound (infimum) of {an}n=1∞.

(c) Completeness Axiom: If S is any non-empty set of real numbers that has an upper bound M , then S has a least
upper bound b. Similarly for least upper bound.

(d) If {an}∞n=1 is bounded from above and below then {an}∞n=1 is bounded .

If {an}∞n=1 is not bounded, then we say that {an}∞n=1 is an unbounded sequence.

(e) Every convergent sequence is bounded but not every bounded sequence

converges . (consider an = (−1)n ).

(f) A sequence {an}∞n=1 is non-decreasing if an ≤ an+1 for every n.

A sequence {an}∞n=1 is non-increasing if an ≥ an+1 for every n.

A sequence {an}∞n=1 is monotonic if it is either non-decreasing or non-increasing.

The Monotone Convergence Theorem: Every bounded, monotonic sequence converges.

Note: The Monotone Convergence Theorem ONLY tells us that the limit exists, NOT the value of the limit. It also tells
us that a non-decreasing sequence converges when it is bounded from above, but diverges to infinity otherwise.

Page 5 of 38



Section 10.1: Sequences MATH 142

Example 3: Does the following recursive sequence converge?

a1 = 2, an+1 = 1
2(an + 6).

a1 = 2, a2 = 1
2(2 + 6) = 4, a3 = 1

2(4 + 6) = 5, 11
2 ,

23
4 , . . . .

It seems that the sequence is increasing. Lets prove this by induction. Suppose that ak−1 > ak for some k > 2. If we can
show ak+1 > ak then we are done. Indeed,

ak−1 < ak =⇒ ak−1 + 6 < ak + 6 =⇒ ak = 1
2(ak−1 + 6) < 1

2(ak + 6) = ak+1.

Thus {an}∞n=1 is an increasing sequence. If we show that the sequence is bounded we can use the Monotone Convergence
Theorem. We know that it is bounded below by 2, since we just showed it was an increasing sequence. Note too that, at
least for the ones we checked, ak < 6. So,

ak+1 = 1
2 (ak + 6) < 1

2(6 + 6) = 6.

So we have {an}∞n=1 is bounded above by 6. So, by the Monotone Convergence Theorem {an}∞n=1 converges.

To find the limit, let L := limn→∞ an. Then,

L = lim
n→∞

an+1 = lim
n→∞

1
2(an + 6) = 1

2(L+ 6) =⇒ 2L = L+ 6 =⇒ L = 6.

So lim
n→∞

an = 6.
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Sum of an Infinite Sequence: An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + · · ·+ an + · · · .

The goal of this section is to understand the meaning of such an infinite sum and to develop methods to calculate it. Since
there are infinitely many terms to add in an infinite series, we cannot just keep adding to see what comes out. Instead, we
look at the result of summing the first n terms of the sequences,

Sn := a1 + a2 + a3 + · · ·+ an.

Sn is called the nth partial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting value
in the same sense as the terms of a sequence approach a limit.

Example 1: To assign meaning to an expression like

1 + 1
2 + 1

4 + 1
8 + 1

16 + · · ·

we add the terms one at a time from the beginning to look for a pattern in how these partial sums grow:

Partial Sum Value

First: S1 = 1 1 = 21 − 1
21−1

Second: S2 = 1 + 1
2

3
2 = 22 − 1

22−1

Third: S3 = 1 + 1
2 + 1

4
7
4 = 23 − 1

23−1

...
...

...

nth: Sn = 1 + 1
2 + 1

4 + · · ·+ 1
2n−1

2n − 1
2n−1

S = lim
n→∞

Sn = lim
n→∞

2n − 1
2n−1 = lim

n→∞

(
2n

2n−1 −
1

2n−1

)
= lim
n→∞

(
2− 1

2n−1

)
2.

Since the sequence of partial sums converges, the infinite series converges. That is,

∞∑
n=1

1
2n−1 = 1 + 1

2 + 1
4 + 1

8 + 1
16 + · · · = 2.
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Definitions: Given a sequence of numbers {an}∞n=1, an expression of the form

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · ·

is an infinite series . The number an is the nth term of the series. The sequence {Sn}∞n=1

defined by

Sn :=
n∑
n=1

an = a1 + a2 + a3 + · · ·+ an

is called the sequence of partial sums of the series, the number Sn being the nth partial sum .

If the sequence of partial sums converges to a limit L, we say that the series converges and that the

sum is L. In this case we write

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · · = L.

If the sequence of partial sums of the series does not converge, we say that the series diverges .

Notation: Sometimes it is nicer, or even more beneficial, to consider sums starting at n = 0 instead. For example, we can
rewrite the series in Example 1 as

∞∑
n=1

1
2n−1 =

∞∑
n=0

1
2n .

At times it may also be nicer to start indexing at some number other than n = 0 or n = 1. This idea is called re-indexing
the series (or sequence). So don’t be alarmed if you come across series that do not start at n = 1.

Geometric Series: A geometric series is of the form

a+ ar + ar2 + ar3 + · · ·+ arn + · · · =
∞∑
n=1

arn−1=
∞∑
n=0

arn

in which a and r are fixed real numbers and a 6= 0. The ratio r can be positive (as in Example 1) or
negative, as in

1− 1
3 + 1

9 −
1
27 + · · ·+

(
−1

3

)n−1
+ · · · =

∞∑
n=1

(
−1

3

)n−1
.

If r = 1, the nth partial sum of the geometric series is

Sn = aa(1) + a(1)2 + a(1)3 + · · ·+ a(1)n−1 = na

and the series diverges since lim
n→∞

Sn = lim
n→∞

na = ±∞ (depending on the sign of a).
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If r = −1, the series diverges since the nth partial sums alternate between a and 0.

S1 = a, S2 = a+ a(−1) = 0, a+ a(−1) = a(−1)2 = a, . . .

If |r| 6= 1, then we use the following “trick”:

Sn = a+ ar + ar2 + · · ·+ srn−1

=⇒ rSn = ar + ar2 + ar3 + · · ·+ arn

=⇒Sn − rSn = a− arn

=⇒ Sn = a− arn

1− r = a(1− rn)
1− r .

If |r| < 1 then rn −→ 0 as n −→∞, so Sn −→
a

1− r . If |r| > 1 then |rn| −→ ∞ as n −→∞ and the series diverges.

Convergence of Geometric Series: If |r| < 1, the geometric series a+ ar + ar2 + · · · arn−1 + · · · converges:

∞∑
n=1

arn−1 = a

1− r , |r| < 1.

If |r| ≥ 1, the series diverges.

Example 2: Consider the series
∞∑
n=0

(−1)n5
4n .

∞∑
n=0

(−1)n5
4n =

∞∑
n=1

(−1)n−15
4n−1 =

∞∑
n=1

5
(
−1

4

)n−1
.

So this series is a geometric series with a = 5 and r = −1
4 . Since |r| < 1 the series converges and so,

∞∑
n=1

5
(
−1

4

)n−1
= 5

1−
(
− 1

4
) = 4

Example 3: Express the repeating decimal 5.232323 . . . as the ratio of two integers.

5.232323 . . . = 5 + 23
100 + 23

1002 + 23
1003 + · · ·

= 5 + 23
100

(
1 + 1

100 + 1
1002 + · · ·

)
= 5 + 23

100

∞∑
n=1

(
1

100

)n−1
a = 1, r = 1

100

= 5 + 23
100

(
1

1− 1
100

)
= 5 + 23

100 ·
100
99

= 518
99
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Example 4: Find the sum of the telescoping series

∞∑
n=1

1
n(n+ 1) .

If we take the partial sum decomposition, ∑
n=1

1
n(n+ 1) =

∞∑
n=1

(
1
n
− 1
n+ 1

)
,

then its easy to see that the partial sums are,

Sn =
(

1−
�
��1
2

)
+
(
�
��1
2 − �

��1
3

)
+
(
�
��1
3 − �

��1
4

)
+ · · ·+

(
�
��1
n
− 1
n+ 1

)
= 1− 1

n+ 1
n→∞−→ 1.

Since the sequence of partial sums converges, the series converges and so
∞∑
n=1

1
n(n+ 1) = 1

Theorem: If the series
∞∑
n=1

an converges, then lim
n→∞

an = 0.

Suppose {Sn}∞n=1 converges to L. Then note that {Sn+1}∞n=1 also converges to L. So then,

0 = L− L = lim
n→∞

Sn+1 − lim
n→∞

Sn = lim
n→∞

(Sn+1 − Sn) = lim
n→∞

an+1 = lim
n→∞

an.

SUPER IMPORTANT NOTE: This theorem does NOT say that if lim
n→∞

an = 0 then
∑∞
n=1 an converges.

The nth Term Test for Divergence: The series
∞∑
n=1

an diverges if lim
n→∞

an fails to exist or is different from zero.

SUPER IMPORTANT NOTE: This theorem does NOT say that if lim
n→∞

an = 0 then
∑∞
n=1 an converges.

1.
∞∑
n=1

n2 diverges since lim
n→∞

n2 =∞.

2.
∞∑
n=1

n+ 1
n

diverges since lim
n→∞

n+ 1
n

= 1 6= 0.

3.
∞∑
n=1

(−1)n+1 diverges since lim
n→∞

(−1)n+1 does not exist.

Combining Series: If
∑

an = A and bn = B, then

1) Sum Rule :
∞∑
n=1

(an + bn) = A+B, 2) Constant Multiple Rule :
∞∑
n=1

can= cA, for any c ∈ R.

Some True Facts:

1. Every non-zero constant multiple of a divergent series diverges.

2. If
∑

an converges and
∑

bn diverges, then
∑

(an ± bn) diverges.

Caution!
∑

(an + bn) can converge when both
∑

an and
∑

bn diverge!.


∑∞
n=1 1 diverges∑∞
n=1(−1) diverges∑∞
n=1 (1 + (−1)) = 0

Adding/Deleting Terms: Adding/deleting a finite number of terms will not alter the convergence or divergence of a
series.
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Tests for Convergence: The most basic question we can ask about a series is whether or not it converges. In the next
few sections we will build the tools necessary to answer that question. If we establish that a series does converge, we
generally do not have a formula for its sum (unlike the case for Geometric Series). So, for a convergent series we need to
investigate the error involved when using a partial sum to approximate its total sum.

Non-decreasing Partial Sums: Suppose
∞∑
n=1

an is an infinite series with an ≥ 0 for all n. Then each partial sum is

greater than or equal to its predecessor since Sn+1 = Sn + an+1, so

S1 ≤ S2 ≤ S3 ≤ · · · ≤ Sn ≤ Sn+1 ≤ . . .

Since the partial sums form a non-decreasing sequence, the Monotone Convergence Theorem give us the following result:

Corollary Of MCT: A series
∞∑
n=1

an of non-negative terms converges if and only if its partial sums are bounded from above.

Example 1: Consider the harmonic series

∞∑
n=1

1
n
.

nth term test:

lim
n→∞

1
n

= 0 =⇒ nth term test is inconclusive.

Note however,

∞∑
n=1

1
n

= 1 + 1
2︸ ︷︷ ︸

3
2

+ 1
3 + 1

4︸ ︷︷ ︸
> 2

4 = 1
2

+ 1
5 + 1

6 + 1
7 + 1

8︸ ︷︷ ︸
> 4

8 = 1
2

+ 1
9 + 1

10 + 1
11 + 1

12 + 1
13 + 1

14 + 1
15 + 1

16︸ ︷︷ ︸
> 8

16 = 1
2

+ · · ·

In general, the sum of 2n terms ending with 1
2n+1 is greater than 1

2 . If n = 2k, the sum Sn is greater than k

2 , so Sn is not
bounded from above. So the Harmonic Series diverges. Another way of seeing this is

S2k = 1 + 1
2 + 1

3 + · · ·+ 1
2k >

k

2
k→∞−→ ∞,

so then Sn −→∞ and the series diverges.

We now introduce the Integral Test with a series that is related to the harmonic series, but whose nth term is 1/n2 instead
of 1/n.
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Example 2: Does the following series converge?

∞∑
n=1

1
n2 .

We will compare the series to
ˆ ∞

1

1
x2 dx.

Sn = 1
12 + 1

22 + · · ·+ 1
n2

= f(1) + f(2) + · · ·+ f(n)

< f(1) +
ˆ n

1

1
x2 dx

< f(1) +
ˆ ∞

1

1
x2 dx

= 1 + 1

= 2 1 2 3 4 5

Since the partial sums are bounded above by 2, the sum converges.

The Integral Test: Let {an}∞n=1 be a sequence of positive terms. Suppose that there is a positive integer N such that for

all n ≥ N , an = f(n), where f(x) is a positive , continuous , decreasing

function of x. Then the series
∞∑

n= N

an and the integral
ˆ ∞

N

f(x) dx both converge or diverge.

Example 3: Show that the p-series

∞∑
n=1

1
np

= 1
1p + 1

2p + 1
3p + · · ·+ 1

np
+ · · · ,

(where p is a real constant) converges if p > 1 and diverges if p ≤ 1.

If p > 1 then f(x) = 1
xp

is a positive, continuous, decreasing function of x. Since
ˆ ∞

1
f(x) dx = 1

p− 1 , the series converges

by the Integral Test. Note that the sum of this series is not generally 1
p− 1 . If p ≤ 0, the sum diverges by the nth term

test. If 0 < p < 1 then 1− p > 0 and

ˆ ∞
1

1
xp

dx = lim
b→∞

ˆ b

1

1
xp

dx = 1
p− 1

(
lim
b→∞

b1−p − 1
)

=∞.

Example 4: Determine the convergence of divergence of the series

∞∑
n=1

ne−n
2
.

f(x) = xe−x
2 is positive, continuous, decreasing and f(n) = an for all n. Further,

ˆ ∞
1

xe−x
2
dx = lim

b→∞

ˆ b

1
xe−x

2
dx = 1

2 lim
b→∞

[
−e−b

2
− (−e−1)

]
= 1

2e .

Since the integral converges, the series also converges.
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Error Estimation: For some convergent series, such as a geometric series or the telescoping series, we can actually
find the total sum of the series. For most convergent series, however, we cannot easily find the total sum. Neverthe-
less, we can estimate the sum by adding the first n terms to get Sn, but we need to know how far off Sn is from the total sum S.

Suppose a series
∑

an is shown to be convergent by the integral test and we want to estimate the size of the remainder
Rn measuring the difference between the total sum S and its nth partial sum Sn.

Rn = S − Sn = an+1 + an+1 + an+1 + · · ·

Lower Bound: Shift the integral test function left 1 unit.

1 2 3 4 5

Rn ≥
ˆ ∞
n+1

f(x) dx

Upper Bound: The integral test function.

1 2 3 4 5

Rn ≤
ˆ ∞
n

f(x) dx

Bound for the Remainder in the Integral Test: Suppose {an}∞n=1 is a sequence of positive terms with ak = f(k),

where f(x) is a continuous positive decreasing function of x for all x ≥ n and that
∞∑
k=1

ak converges to S. Then the

remainder Rn = R− Sn satisfies the inequalities
ˆ ∞
n+1

f(x) dx ≤ Rn ≤
ˆ ∞
n

f(x) dx.

Example 5: Estimate the sum, S, of the series
∞∑
n=1

1
n2 with n = 10.

ˆ ∞
n

1
x2 dx = lim

b→∞

ˆ b

n

1
x2 dx = lim

b→∞

[
− 1
x

]b
n

= lim
b→∞

[
−1
b

+ 1
n

]
= 1
n

=⇒ S10 + 1
11 ≤ S ≤ S10 + 1

10

S10 = 1 + 1
4 + 1

9 + ·+ 1
100 ≈ 1.54977 =⇒ 1.64068 ≤ S ≤ 1.64977

It seems reasonable that taking the midpoint of this interval would give a good estimate, so

S ≈ 1.6452.

It turns out that using fancy advanced calculus (Fourier Analysis) we actually know that

S =
∞∑
n=1

1
n2 = π2

6 ≈ 1.64493.
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Section 10.4: Comparison Tests for Series -
Worksheet

Goal: In Section 8.8 we saw that a given improper integral converges if its integrand is less than the integrand of another inte-
gral known to converge. Similarly, a given improper integral diverges if its integrand is greater than the integrand of another
integral known to diverge. In Problems 1−8, you’ll apply a similar strategy to determine if certain series converge or diverge.

Problem 1: For each of the following situations, determine if
∞∑
n=1

an converges, diverges, or if one cannot tell without

more information.

(a) If 0 ≤ an ≤
1
n

for all n, we can conclude nothing .

(b) If 1
n
≤ an for all n, we can conclude

∞∑
n=1

an diverges .

(c) If 0 ≤ an ≤
1
n2 for all n, we can conclude

∞∑
n=1

an converges .

(d) If 1
n2 ≤ an for all n, we can conclude nothing .

(e) If 1
n2 ≤ an ≤

1
n

for all n, we can conclude nothing .

Problem 2: For each of the cases in Problem 1 where you needed more information to determine the convergence of the
series, give (i) an example of a series that converges and (ii) an example of a series that diverges, both of which satisfy the
given condition.

(a) (i) 1
n2 ≤

1
n

and
∞∑
n=1

1
n2 converges. (ii) 1

n+ 1 ≤
1
n

and
∞∑
n=1

1
n+ 1 diverges.

(d) (i) 1
n2 ≤

1
n2 − 1 and

∞∑
n=1

1
n2 − 1 converges. (ii) 1

n2 ≤
1
n

and
∞∑
n=1

1
n

diverges.

(e) (i) 1
n2 ≤

1
n2 − 1 ≤

1
n

and
∞∑
n=1

1
n2 − 1 converges. (ii) 1

n2 ≤
1

n+ 1 ≤
1
n

and
∞∑
n=1

1
n+ 1 diverges.
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Direct Comparison Test for Series: If 0 ≤ an ≤ bn for all n ≥ N , where N ∈ N, then,

1. If
∞∑
n=1

bn converges , then so does
∞∑
n=1

an.

2. If
∞∑
n=1

an diverges , then so does
∞∑
n=1

bn.

Now we’ll practice using the Direct Comparison Test:

Problem 3: Let an = 1
2n + n

and let bn =
(

1
2

)n
.

(a) Does
∞∑
n=1

bn converge or diverge? Why?

Converges - its a Geometric Series with r = 1
2 .

(b) How do the sizes of the terms an and bn compare?

an = 1
2n + n

≤ 1
2n =

(
1
2

)n
= bn.

(c) What can you conclude about
∞∑
n=1

1
2n + n

?

It converges!

Problem 4: Let an = 1
n2 + n+ 1.

(a) By considering the rate of growth of the denominator of an, what choice would you make for bn?

bn = 1
n2

(b) Does
∞∑
n=1

bn converge or diverge?

Converges - its a p− series with p = 2

(c) How do the sizes of the terms an and bn compare?

an = 1
n2 + n+ 1 ≤

1
n2 = bn

(d) What can you conclude about
∞∑
n=1

an?

It converges!
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Problem 5: Use the Direct Comparison Test to determine if
∞∑
n=1

√
n4 − 1
n5 + 3 converges or diverges. (Hint: What are the

dominant terms of an?)

The dominant terms of an are
√
n4

n5 = n2

n5 = 1
n3 .

• Choose bn = 1
n3 .

• an =
√
n4 − 1
n5 + 3 <

√
n4

n5 + 3 = n2

n5 + 3 <
n2

n5 = 1
n3 = bn.

•
∞∑
n=1

bn is a p-series with p = 3 > 1, so it converges.

• Since an < bn,
∞∑
n=1

an also converges.

Problem 6: Use the Direct Comparison Test to determine if
∞∑
n=1

cos2(n)√
n3 + n

converges or diverges.

• cos2(n) ≤ 1 =⇒ cos2(n)√
n3 + n

≤ 1√
n3 + n

<
1√
n3

= 1
n3/2 =⇒ choose bn = 1

n3/2 .

•
∞∑
n=1

bn is a p-series with p = 3
2 > 1, so it converges.

• Since an < bn,
∞∑
n=1

an also converges.

Problem 7: Unfortunately, the Direct Comparison Test doesn’t always work like we wish it would. Let an = 1
n2 and

bn = 1
n2 − 1 for n ≥ 2.

(a) By comparing the relative sizes of the terms of the two sequences, do we have enough information to determine if
∞∑
n=2

bn converges or diverges?

1
n2 ≤

1
n2 − 1 =⇒ So Direct Comparison is inconclusive.

(b) Show that lim
n→∞

bn
an

= 1.

lim
n→∞

1
n2−1

1
n2

= lim
n→∞

n2

n2 − 1 = lim
n→∞

n2 − 1 + 1
n2 − 1 = lim

n→∞

(
1 + 1

n2 − 1

)
= 1
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(c) Using part (b), explain carefully why, for all n large enough (more precisely, for all n larger than some integer N),

bn ≤ 2an. Now can you determine if
∞∑
n=N

bn converges or diverges?

1
n2 − 1 ≤

2
n2 ⇐⇒ n2 ≤ 2(n2 − 1)⇐⇒ n2 ≤ 2n2 − 2⇐⇒ 2 ≤ n2 ⇐⇒ 1 < n.

Yes!

∞∑
n=2

1
n2 − 1 ≤

∞∑
n=2

2
n2 = 2

∞∑
n=2

1
n2 converges since it is a p-series =⇒

∞∑
n=1

bn converges!

The Limit Comparison Test: Suppose an > 0 and bn > 0 for all n. If lim
n→∞

an
bn

= c, where c is finite and c > 0, then

the two series
∑

an and
∑

bn either both converge or both diverge .

Problem 8: Using either the Limit or Direct Comparison Test, determine if the series
∞∑
n=2

n3 − 2n
n4 + 3 converges or diverges.

n3 − 2n
n4 + 3 >

n3

n4 + 3 which behaves like 1
n
.

Let bn = 1
n

and use the Limit Comparison Test:

lim
n→∞

n3−2n
n4+3

1
n

= lim
n→∞

n3 − 2n
n4 + 3 · n = lim

n→∞

n4 − 2n2

n4 + 3 = 1 > 0

Since
∞∑
n=2

1
n

diverges,
∞∑
n=2

n3 − 2n
n4 + 3 also diverges.

Problem 9: Determine whether the series
∞∑
n=1

10n+ 1
n(n+ 1)(n+ 2) converges or diverges.

0 < 10n+ 1
n(n+ 1)(n+ 2) ≈

10n
n3 = 10 1

n2 so let bn = 1
n2 .

lim
n→∞

an
bn

=
10n+1

n3+2n2+2n
1
n2

= lim
n→∞

10n3 + n2

n3 + 2n2 + 2n = lim
n→∞

10 + 1 1
n

1 + 2
n + 2

n2

= 10 > 0.

So
∞∑
n=1

an behaves the same way
∞∑
n=1

bn does. Thus by the limit comparison test,
∞∑
n=1

an converges.
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Section 10.5: Absolute Convergence & the
Ratio and Root Tests

When the terms of a series are positive and negative, the series may or may not converge.

Example 1: Consider the series

5− 5
4 + 5

16 −
5
64 + · · · =

∞∑
n=0

5
(
−1

4

)n
.

This is a geometric series with |r| =
∣∣∣∣−1

4

∣∣∣∣ = 1
4 < 1, so it converges.

Example 2: Now consider

1− 5
4 + 25

16 −
125
64 + · · · =

∞∑
n=0

(
−5

4

)n
.

This is a geometric series with |r =
∣∣∣∣−5

4

∣∣∣∣ = 5
4 > 1, so it diverges.

The Absolute Convergence Test:

If
∞∑
n=0
|an| converges, then

∞∑
n=0

an converges.

Definitions: A series
∑

an converges absolutely (or is absolutely convergent) if the corresponding series of absolute
values

∑
|an|, converges. Thus, if a series is absolutely convergent, it must also be convergent. We call a series condi-

tionally convergent if
∑

an converges but
∑
|an| diverges.

Example 3: Consider
∞∑
n=1

(−1)n+1 1
n2 .

an = (−1)n+1 1
n2 =⇒ |an| =

1
n2 :

∞∑
n=1
|an| =

∞∑
n=1

1
n2 converges since it is a p-series with p = 2 > 1,

so
∞∑
n=1

an converges absolutely
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The Ratio Test: Let
∑

an be any series and suppose

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

Then we have the following:

• If L < 1, then
∑

an converges absolutely.

• If L > 1 (including L =∞), then
∑

an diverges.

• If L = 1, we can make no conclusion about the series using this test.

Example 4: Use the Ratio Test to decide whether the series

∞∑
n=0

2n + 5
3n

converges absolutely, is conditionally convergent or diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 2n+1+5
3n+1

2n+5
3n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1 + 5
3n+1 · 3n

2n + 5

∣∣∣∣
= lim
n→∞

∣∣∣∣ 2n+1 + 5
3 (2n + 5)

∣∣∣∣
= 1

3 lim
n→∞

2n+1 + 5
2n + 5

= 1
3 lim
n→∞

2 + 5
2n

1 + 5
2n

= 2
3 < 1

So,
∞∑
n=0

2n + 5
3n converges absolutely by the Ratio Test.

Example 5: Use the Ratio Test to decide whether the series

∞∑
n=1

(2n)!
(n!)2

converges absolutely, is conditionally convergent or diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2(n+ 1))!
((n+ 1)!)2 ·

(n!)2

(2n)!

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2n+ 2)!
(n+ 1)! · (n+ 1)! ·

n! · n!
(2n)!

∣∣∣∣
= lim
n→∞

∣∣∣∣ (2n+ 2) · (2n+ 1) ·���(2n)!
(n+ 1) ·��n! · (n+ 1) ·��n! ·

��n! ·��n!
���(2n)!

∣∣∣∣
= lim
n→∞

(2n+ 2)(2n+ 1)
(n+ 1)(n+ 1)

= lim
n→∞

(
2 + 2

n

) (
2 + 1

n

)(
1 + 1

n

) (
1 + 1

n

)
= 4 > 1

So,
∞∑
n=1

(2n)!
(n!)2 diverges by the Ratio Test. The ratio test is super useful for factorials
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The Root Test: Let
∑

an be any series and suppose

lim
n→∞

n
√
|an| = L.

Then we have the following:

• If L < 1, then
∑

an converges absolutely.

• If L > 1 (including L =∞), then
∑

an diverges.

• If L = 1, we can make no conclusion about the series using this test.

Example 6: Use the Root Test to determine whether the series

∞∑
n=1

n2

2n

converges absolutely, is conditionally convergent, or diverges.

lim
n→∞

n
√
an = lim

n→∞
n

√∣∣∣∣n2

2n

∣∣∣∣ = lim
n→∞

n
√
n2

2

= lim
n→∞

( n
√
n)2

2

= 12

2
= 1

2 < 1

So,
∞∑
n=1

n2

2n converges absolutely by the Root Test. The ratio test is super useful for an

lim
n→∞

n
√
n = lim

n→∞
eln( n

√
n) = elimn→∞

ln(n)
n

L’H= elimn→∞
1/n

1 = e0 = 1
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Section 10.6: The Alternating Series Test

Definition: A series whose terms alternate between positive and negative is called an alternating series. The nth term
of an alternating series is of the form

an = (−1)n+1bn or an = (−1)nbn

where bn = |an| is a positive number.

The Alternating Series Test: The series

∞∑
n=1

(−1)n+1bn = b1 − b2 + b3 − b4 + · · · , bn > 0,

converges if the following two conditions are satisfied:

• bn ≥ bn+1 for all n ≥ N , for some integer N ,

• lim
n→∞

bn = 0.

Example 1: The alternating harmonic series

∞∑
n=1

(−1)n+1 1
n

= 1− 1
2 + 1

3 −
1
4 + · · ·

clearly satisfies the requirements with N = 1 and therefore converges.

Instead of verifying bn ≥ bn+1, we can follow the steps we did in the integral test to verify the sequence is decreasing.
Define a differentiable function f(x) satisfying f(n) = bn. If f ′(x) ≤ 0 for all x greater than or equal to some positive
integer N , then f(x) is non-increasing for x ≥ N . It follows that f(n) ≥ f(n+ 1), or bn ≥ bn+1 for all N .

Example 2: Consider the sequence where bn == 10n
n2 + 16. Define f(x) = 10x

x2 + 16. Then f
′(x) = 10(16− x2)

(x2 + 16) ≥ 0 when
x ≥ 4. It follows that bn ≥ bn+1 for n ≥ 4.

The Alternating Series Test Estimation Theorem: If the alternating series
∞∑
n=1

(−1)n+1bn satisfies the conditions of

the AST, then for n ≥ N ,

Sn = b1 − b2 + b3 − b4 + · · ·+ (−1)n+1bn

approximates the sum L of the series with an error whose absolute value is less than bn+1, the absolute value of the first
unused term.
Furthermore, the sum L lies between any two successive partial sums Sn and Sn+1, and the remainder, L− Sn, has the
same sign as the first unused term.
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Example 3: Let’s apply the Estimation Theorem on a series whose sum we know:

∞∑
n=0

(−1)n 1
2n = 1− 1

2 + 1
4 −

1
8 + 1

16 −
1
32 + 1

64 −
1

128 + 1
256 − · · · =

1
1−

(
− 1

2
) = 2

3 .

n Sum Sn L− Sn
0 1 1 − 1

3

1 1− 1
2

1
2

1
6

2 1− 1
2 + 1

4
3
4 − 1

12

3 1− 1
2 + 1

4 −
1
8

5
8

1
24

4 1− 1
2 + 1

4 −
1
8 + 1

16
11
16 − 1

48

5 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32
21
32

1
96

6 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32 + 1
64

43
64 − 1

192

7 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32 + 1
64 −

1
128

85
128

1
384

8 1− 1
2 + 1

4 −
1
8 + 1

16 −
1

32 + 1
64 −

1
128 + 1

256
171
256 − 1

768

Example 4 - Conditional Convergence: We have seen that in absolute value, the Alternating Harmonic Series diverges.
The presence of infinitely many negative terms is essential to its convergence. We say the Alternating Harmonic Series if
conditionally convergent. We can extend this idea to the alternating p-series.
If p is a positive constant, the sequence 1

np
is a decreasing sequence with limit zero. Therefore, the alternating p-series

∞∑
n=1

(−1)n+1

np
= 1− 1

2p + 1
3p −

1
4p + · · · , p > 0

converges.

• If p > 1, the series converges absolutely.

• If 0 < p ≤ 1, the series converges conditionally.

The Rearrangement Theorem for Absolutely Convergent Series: If
∑

an converges absolutely and b1, b2, . . . , bn . . .

is any arrangement of the sequence {an}, then
∑

bn converges absolutely and

∑
bn =

∑
an.

Example 5: We know
∞∑
n=1

(−1)n+1

n
converges to some number L.

By the Estimation Theorem, we know L 6= 0 (our partial sums never “hop” over 0). So,

2L = 2
(

1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

)
= 2− 1 + 2

3 −
1
2 + 2

5 −
1
3 + 2

7 −
1
4 + · · ·

= (2− 1)− 1
2 +

(
2
3 −

1
3

)
− 1

4 +
(

2
5 −

1
5

)
− 1

6 + · · · (group all the terms with odd denominators together,
leaving the even denominator terms alone)

= 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

= L

So 2L = L . . . so L = 0? But L 6= 0 . . . oops. Thus we cannot rearrange the sum in a conditionally convergent sequence.
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Section 10.7: Power Series

Definition: A power series about x = 0 is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · .

A power series about x = a is a series of the form

∞∑
n=0

cn (x− a)n = c0 + c1 (x− a) + c2 (x− a)2 + · · ·+ cn (x− a)n + · · ·

in which the centre a and the coefficients c0, c1, c2, . . . , cn, . . . are constants.

Example 1 - Geometric Power Series: Taking all the coefficients to be 1 in the power series centred at x = 0 gives
the geometric power series:

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·+ xn + · · · .

This is the geometric series with first term 1 and ratio x.

Sn = 1 + x+ x2 + x3 + x4 + · · ·+ xn

=⇒ (1− x)Sn = (1− x)
(
1 + x+ x2 + x3 + x4 + · · ·+ xn

)
=
(
1 + x+ x2 + x3 + x4 + · · ·+ xn

)
−
(
x+ x2 + x3 + x4 + x5 · · ·+ xn+1)

= 1− xn+1

=⇒ Sn = 1− xn
1− x

So,

∞∑
n=0

xn = lim
n→∞

Sn = lim
n→∞

1− xn
1− x which converges if and only if |x| < 1

Instead of focussing on finding a formula for the sum of a power series, we are now going to think of the partial sums of the
series as polynomials Pn(x) that approximate the function on the left. For values of x near zero, we need only take a few
terms of the series to get a good approximation. As we move toward x = 1 or x = −1, we need more terms.

One of the most important questions we can ask about a power series is “for what values of x will the series converge?”
Since power series are functions, what we are really asking here is “what is the domain of the power series?”
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Example 2: Consider the power series

1− 1
2(x− 2) + 1

4(x− 2)2 − · · ·+
(
−1

2

)n
(x− 2)n + · · ·

Centre: a = 2, c0 = 1, c1 = −1
2 , c2 = 1

4, . . . , cn =
(
−1

2

)n
,

Ratio: r = cn+1(x− 2)n+1

cn(x− 2)n = c1(x− 2)
c0

=
− 1

2 (x− 2)
1 = −x− 2

2

The series converges when |r| < 1, that is,∣∣∣∣−x− 2
2

∣∣∣∣ < 1 =⇒
∣∣∣∣x− 2

2

∣∣∣∣ < 1 =⇒ |x− 2| < 2 =⇒ −2 < x− 2 < 2 =⇒ 0 < x < 4.

Example 3: For what values of x do the following series converge?

(a)
∞∑
n=1

(−1)n−1x
n

n
.

We will use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣(−1)n x

n+1

n+ 1 ·
n

(−1)n−1xn

∣∣∣∣ =
∣∣∣∣ nx

x+ 1

∣∣∣∣ = |x| n

n+ 1
n→∞−→ |x|

The series converges absolutely when |x| < 1 and diverges when |x| > 1. It remains to see what happens at the
endpoints; x = −1 and x = 1.

x = −1:
∞∑
n=1

(−1)n−1 (−1)n
n

=
∞∑
n=1

(−1)2n−1

n
=
∞∑
n=1

−1
n

= −
∞∑
n=1

1
n

=⇒ the series diverges at x = −1.

x = 1:
∞∑
n=1

(−1)n−1 1n
n

=
∞∑
n=1

(−1)n−1

n
= the Alternating Harmonic Series =⇒ the series converges at x = 1.

So, the series
∞∑
n=1

(−1)n−1x
n

n
converges for −1 < x ≤ 1 and diverges elsewhere.

(b)
∞∑
n=0

xn

n! .

We will use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ xn+1

(n+ 1)! ·
n!
xn

∣∣∣∣ =
∣∣∣∣ xn+1

(n+ 1) · n! ·
n!
xn

∣∣∣∣ =
∣∣∣∣ x

n+ 1

∣∣∣∣ = |x|
n+ 1 =n→∞−→ 0

Since the value of the limit is 0, no matter what real number we choose for x and 0 < 1, the series converges absolutely
for all values of x. (x ∈ R, −∞ < x <∞, (−∞,∞)).

Fact: There is always at least one point for which a power series converges: the point x = a at which the series is centred.
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The Convergence Theorem for Power Series: If the power series
∞∑
n=0

anx
n converges at x = c 6= 0, then it converges

absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

The Convergence Theorem and the previous examples lead to the conclusion that a power series
∑

cn(x− a)n behaves in
one of three possible ways;

• If might converge on some interval of radius R. an interval has radius R if its length is 2R

• It might converge everywhere.

• It might converge only at x = a.

The Radius of Convergence of a Power Series: The convergence of the series
∑

cn(x− a)n is described by one of
the following three cases:

1. There is a positive number R such that the series diverges for x with |x− a| > R but converges absolutely for x with
|x− a| < R. The series may or may not converge at either of the endpoints x = a−R and x = a+R.

2. The series converges absolutely for every x (R =∞)

3. The series converges only at x = a and diverges elsewhere (R = 0)

R is called the radius of convergence of the power series, and the interval of radius R centred at x = 1 is called the
interval of convergence. The interval of convergence may be open, closed or half open, depending on the series.

How to test a Power Series for Convergence:

1. Use the Ratio (or Root) Test to find the interval where the series converges absolutely. Ordinarily, this is an open
interval

|x− a| < R or a−R < x < a+R.

2. If the interval of absolute convergence is finite, test fo convergence or divergence at each endpoint. Use a Comparison
Test, the Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is a− R < x < a+ R, the series diverges for |x− a| > R (it does not even
converge conditionally) because the nth term does not approach zero for those values of x.

Page 25 of 38



Section 10.7: Power Series MATH 142

Example 4: Find the interval and radius of convergence for

∞∑
n=1

xn

n
√
n3n =

∞∑
n=1

xn

n3/23n .

Ratio Test:

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)3/23n+1 ·
n3/23n
xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn3/2

(n+ 1)3/23

∣∣∣∣ = |x|3 lim
n→∞

(
n

n+ 1

)3/2
= |x|3 .

So the series converges absolutely when |x|3 < 1 =⇒ |x| < 3 =⇒ −3 < x < 3.

Check the endpoints:

x = −3:
∞∑
n=1

(−3)n
n3/23n =

∞∑
n=1

(−1)n
n3/2 which is an alternating p-series with p = 3

2, so it converges.

x = 3:
∞∑
n=1

3n
n3/23n =

∞∑
n=1

1
n3/2 which is a p-series with p = 3

2, so it converges.

Thus the interval of convergence is [−3, 3] and the radius of convergence is R = 3.

Operations on Power Series: On the intersection of their intervals of convergence, two power series can be added and
subtracted term by term just like series of constants. They can be multiplied just as we multiply polynomials, but we often
limit the computation of the product to the first few terms, which are the most important. The following result gives a
formula for the coefficients in the product.

The Series Multiplication Theorem for Power Series: If A(x) =
∞∑
n=0

anx
n and Bn(x) =

∞∑
n=0

bnx
n converge absolutely

for |x| < R, and

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0 =
n∑
k=0

akbn−k,

then
∞∑
n=0

cnx
n converges absolutely to A(x)B(x) for |x| < R:( ∞∑

n=0
anx

n

)
·

( ∞∑
n=0

bnx
n

)
=
∞∑
n=0

cnx
n.

We can also substitute a function f(x) for x in a convergent power series:

Theorem: If
∞∑
n=0

anx
n converges absolutely for |x| < R, then

∞∑
n=0

an (f(x))n converges absolutely for any continuous

function f(x) with |f(x)| < R. For example:

Since 1
1− x =

∞∑
n=0

xn converges absolutely for |x| < 1, it follows that

1
1− 4x2 =

∞∑
n=0

(4x2)n =
∞∑
n=0

4nx2n

converges absolutely for |4x2| < 1 or |x| < 1
2 .
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Term-by-Term Differentiation Theorem: If
∑

cn(x− a)n has radius of convergence R > 0, it defines a function

f(x) =
∞∑
n=0

cn (x− a)n

on the interval a−R < x < a+R. This function f(x) has derivatives of all orders inside the interval, and we obtain the
derivatives by differentiating the original series term by term:

f ′(x) =
∞∑
n=1

ncn (x− a)n−1
,

f ′′(x) =
∞∑
n=2

n(n− 1)cn(x− a)n−2,

and so on. Each of these series converge at every point of the interval a−R < x < a+R.
Note: When we differentiate we may have to start our index at one more than it was before. This is because we lose the
constant term (if it exists) when we differentiate.

Be Careful!! Term-by-Term differentiation might not work for other kinds of series. For example, the trigonometric series

∞∑
n=0

sin(n!x)
n2

converges for all x. But if we differentiate term by term we get the series

∞∑
n=0

n! cos(n!x)
n2

which diverges for all x. This is not a power series since it is not a sum of positive integer powers of x.

Example 5: Find a series for f ′(x) and f ′′(x) if

f(x) = 1
1− x = 1 + x+ x2 + x3 + x4 + · · ·+ xn + · · · =

∞∑
n=0

xn, −1 < x < 1.

f ′(x) = 1
(1− x)2 = 0 + 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1 + · · · =

∞∑
n=1

nxn−1, −1 < x < 1.

f ′′(x) = 2
(1− x)3 = 0 + 0 + 2 + 6x+ 12x2 + · · ·+ n(n− 1)xn−2 + · · · =

∞∑
n=2

n(n− 1)xn−2, −1 < x < 1.
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Term-by-Term Integration Theorem: Suppose that

f(x) =
∞∑
n=0

cn(x− 1)n

converges for a−R < x < a+R for R > 0. Then,

∞∑
n=0

cn
(x− a)n+1

n+ 1

converges for a−R < x < a+R and

ˆ
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1

for a−R < x < a+R.

Example 6: Given 1
1 + t

= 1− t+ t2 − t3 + · · · converges on −1 < t < 1, find a series representation for f(x) = ln(1 + x).

ln(1 + x) =
ˆ x

0

1
1 + t

dt = t− t2

2 + t3

3 −
t4

4 + · · ·
∣∣∣∣∣
x

0

‘ = x− x2

2 + x3

3 −
x4

4 + · · ·

=
∞∑
n=1

(−1)n+1xn

n
, −1 < x < 1.

Example 7: Identify the function f(x) such that

f(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1 = x− x3

3 + x5

5 −
x7

7 + · · · , −1 < x < 1.

Differentiate

f ′(x) = 1− x2 + x4 − x6 + · · · =
∞∑
n=0

(−1)nx2n =
∞∑
n=0

(−x2)n, −1 < x < 1.

This is a geometric series with first term 1 and ratio −x2, so

f ′(x) = 1
1− (−x2) = 1

1 + x2 .

Now we can integrate to find f(x):

f(x) =
ˆ
f ′(t) dt = arctan(x) + C.

Since f(0) = 0, we have 0 = arctan(0) + C = C, so then

f(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1 = arctan(x) − 1 < x < 1
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Series Representations: We’ve seen that geometric series can be used to generate a power series for functions having a
special form, such as f(x) = 1

1− x or g(x) = 3
x− 2 . Can we also express functions of different forms as power series?

If we assume that a function f(x) with derivatives of all orders is the sum of a power series about x = a then we can
readily solve for the coefficients cn.

Suppose

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

with positive radius of converges R. By repeated term-by-term differentiation within the interval of convergence, we obtain:

f ′(x) = 1 · c1 + 2 · c2(x− a) + 3 · c3(x− a)2 + 4 · c4(x− a)3 + · · ·+ n · cn(x− a)n−1 + · · ·

f ′′(x) = 2 · 1 · c2 + 3 · 2 · c3(x− a) + 4 · 3 · c4(x− a)2 + · · ·+ n · (n− 1) · cn(x− a)n−2 + · · ·

f ′′′(x) = 3 · 2 · 1 · c3 + 4 · 3 · 2 · c4(x− a) + · · ·+ n · (n− 1) · (n− 2) · cn(x− a)n−2 + · · ·

=
...

Since x = a is in the assumed interval of convergence, all of the above equations are valid when x = a:

f(a) = c0, f ′(a) = 1 · c1, f ′′(a) = 2 · 1 · c2, f ′′′(a) = 3 · 2 · 1 · c3, f (n)(a) = n! · cn

Solving for each ck gives:

c0 = f(a), c1 = f ′(a)
1 , c2 = f ′′(a)

2 · 1 , c3 = f ′′′(a)
3 · 2 · 1 , cn = f (n)(a)

n!

Thus, if f(x) has such a series representation, it must have the form

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n + · · · =
∞∑
n=0

f (n)(a)
n! (x− a)n.

On the other hand, if we start with an arbitrary function f(x) that is infinitely differentiable on an interval containing
x = a and use it to generate the series above, will the series then converge to f(x) at each x in the interval of convergence?
The answer is maybe.
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Definitions: Let f(x) be a function with derivatives of all orders throughout some open interval containing a. Then the
Taylor Series generated by f(x) at x = a is

∞∑
n=0

fn(a)
n! (x− a)n = f(a) + f ′(a)(x− a) + f ′′(a)

2! (x− a)2 + · · ·+ f (n)(a)
n! (x− a)n + · · · .

The Maclaurin Series generated by f(x) is the Taylor series generated by f(x) at a = 0.

Example 1: Find the Taylor series generated by f(x) = 1
x

at a = 2. Where, if anywhere, does the series converge to 1
x
?

n f (n)(x) f (n)(a)

0 1
x

1
2

1 (−1) · 1
x2 (−1) 1

22

2 (−1)2 · 2 · 1
x3 (−1)2 2 · 1

23

3 (−1)3 · 3 · 2 · 1
x4 (−1)3 3 · 2 · 1

24

4 (−1)4 · 4 · 3 · 2 · 1
x5 (−1)4 4 · 3 · 2 · 1

25

n (−1)n · n!
xn+1 (−1)n n!

2n+1

The key thing to do when looking for the
general term is to not simplify everything.
You should try and only group those terms
that come from the “same place.” For ex-
ample, when n = 2 we could have cancelled
a 2 from the numerator and denominator
of f ′′(2). But since the 2 in the numerator
came from differentiating and the 2 on the
denominator came from plugging in x = a,
we leave them alone. Leaving factors alone
this way will help you more easily see where
each number in the factor is coming from
and its relation to the value of n.

So, the Taylor Series generated by f(x) = 1
x

centred at a = 2 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n n!
2n+1

n! (x− 2)n =
∞∑
n=0

(−1)n
2n+1 (x− 2)n

Note that

f(x) =
∞∑
n=0

(−1)n
2n+1 (x− 2)n = 1

2 −
(x− 2)

22 + (x− 2)2

23 − · · ·+ (−1)n(x− 2)n
2n+1

is geometric with first term 1
2 and ratio r = − (x− 2)

2 . So it converges (absolutely) for

∣∣∣∣− (x− 2)
2

∣∣∣∣ < 1 =⇒ |x− 2| < 2 =⇒ 0 < x < 4.

Now we check the endpoints:

x = 0:
∞∑
n=0

(−1)n
2n+1 (0− 2)n =

∞∑
n=0

(−1)n(−2)n
2n+1 =

∞∑
n=0

2n
2n+1 =

∞∑
n=0

1
2 =⇒ diverges. (Also clear since f(x) =

1
x

is not defined at x = 0)

x = 4:
∞∑
n=0

(−1)n
2n+1 (4− 2)n =

∞∑
n=0

(−1)n2n
2n+1 =

∞∑
n=0

(−1)n
2 =⇒ diverges.

Thus the only values of x for which this Taylor Series converges are 0 < x < 4 .
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Definition: Let f(x) be a function with derivatives of order 1, . . . , N in some open interval containing a. Then for any
integer n from 0 through N , the Taylor polynomial of order n generated by f(x) at x = a is the polynomial

Pn(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n.

Just as the linearisation of f(x) at x = a provides the best linear approximation of f(x) in a neighbourhood of a, the
higher-order Taylor polynomials provide the best polynomial approximations of their respective degrees.

Example 2: Find the Taylor Series and Taylor polynomials generated by f(x) = cos(x) at a = 0.

n f (n)(x) f (n)(a)

0 cos(x) 1

1 − sin(x) 0

2 − cos(x) −1

3 sin(x) 0

4 cos(x) 1

2n (−1)n cos(x) (−1)n

2n+ 1 (−1)n+1 sin(x) (−1)n0

When terms are alternating between 0s and
non-zero terms, take a look at the parity
of the values of n for which they appear.
That is, check if all the 0s occur when
n is odd (or when n is even). Once you
figure out which is which you can ignore
all the zero terms by considering 2n or 2n+1.

If you are dealing with trigonometric func-
tions, it is likely that at some point there will
be some repetition happening. For example
here f (4)(x) = f(x). So then you might be
able to see what is happening by only using
the terms up until the repeat.

So the Taylor Series generated by f(x) = cos(x) at a = 0 is

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n
(2n)! x

2n

To find the interval of convergence, we can use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(−1)n+1x2(n+1)

(2(n+1))!
(−1)nx2n

(2n)!

∣∣∣∣∣∣ =
∣∣∣∣ (−1)n+1x2n+2

(2n+ 2)! · (2n)!
(−1)nx2n

∣∣∣∣ = x2

(2n+ 2)(2n+ 1)
n→∞−→ 0

So this Taylor Series converges for all x ∈ R.

Finally, the Taylor polynomials are given by:

P2n(x) =
n∑
k=0

(−1)k
(2k)! x

2k = 1− x2

2 + x4

24 − · · ·+ (−1)n x2n

(2n)! .
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Example 3: Find the Maclaurin Series generated by f(x) = sin(x).

Recall that cos(x) is an even function and we have just discovered in Example 2 that only even powers of x occur in its
Maclaurin Series. One would expect then that since f(x) = sin(x) is an odd function that only odd powers of x will appear in
its Maclaurin Series. Indeed this is actually the case. Doing the same calculations as in Example 2 will yield the desired result.

Here however we will just invoke the power of integration: Since
ˆ x

0
cos(t) dt = sin(x) and

ˆ x

0

(−1)n
(2n)! t

2n dt = (−1)n
(2n)! ·

t2n+1

(2n+ 1)

∣∣∣∣∣
x

0

= (−1)n
(2n+ 1)! t

2n+1

∣∣∣∣∣
x

0

= (−1)n
(2n+ 1)!x

2n+1,

we have the Taylor Series generated by f(x) = sin(x) is

ˆ x

0

∞∑
n=0

(−1)n
(2n)! t

2n dt =
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1

Example 4: Find the Taylor Series generated by f(x) = ex.

Note that f (n)(x) = f(x) = ex for every positive integer n. So f (n)(0) = e0 = 1 for each n, so then the Taylor Series
generated by f(x) = ex at a = 0 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

xn

n!
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Taylors Theorem: In the last section, we asked when a Taylor Series for a function can be expected to that (generating)
function. That question is answered by the following theorem:

If f(x) and its first n derivatives f ′(x), f ′′(x), . . . , f (n)(x) are continuous on the closed interval between a and b, and
f (n)(x) is differentiable on the open interval between a and b, then there exists a number c between a and b such that

f(b) = f(a) + f ′(a)(b− a) + f ′′(a)
2! (b− a)2 + · · ·+ f (n)(a)

n! (b− a)n + f (n+1)(c)
(n+ 1)! (b− a)n+1.

Interesting Fact: Taylor’s Theorem is a generalisation of the Mean Value Theorem!

Taylor’s Formula: If f(x) has derivatives of all orders in a n open interval I containing a, then for each positive integer
n and for each x ∈ I,

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n +Rn(x),

where

Rn(x) = f (n+1)(c)
(n+ 1)! (x− a)n+1

for some c between a and x.

Stating Taylor’s Theorem in this way says that for each x ∈ I,

f(x) = Pn(x) +Rn(x),

where the function Rn(x) is determined by the value of the (n+ 1)st derivative f (n+1)(x) at a point c that depends on
both a and x, and that it lies somewhere between them.

Definitions: The second equation is called Taylor’s formula. The function Rn(x) is called the remainder

of order n or the error term for the approximation of f(x) by Pn(x) over I.

If Rn(x) −→ 0 as n −→∞ for all x ∈ I, we say that the Taylor Series generated by f(x) at x = a converges to f(x) on I,
and we write

f(x) =
∞∑
n=0

f (n)(a)
n! (x− a)n.

Often we can estimate Rn(x) without knowing the value of c.
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Example 1: Show that the Taylor Series generated by f(x) = ex at x = 0 converges to f(x) for every value of x.

f(x) has derivatives of all orders on (−∞,∞). Using the Taylor Polynomial generated by f(x) = ex at a = 0 and Taylor’s
formula, we have

ex = 1 + x+ x2

2! + · · ·+ xn

n! +Rn(x)

where Rn(x) = ec

(n+ 1)!x
n+1 for some 0 between 0 and x. Recall that ex is an increasing function, so;

x > 0: 0 < c < x =⇒ e0 < ec < ex =⇒ 1 < ec < ex

x < 0: x < c < 0 =⇒ ex < ec < e0 =⇒ ex < ec < 1

x = 0: ex = 1, xn+1 = 0 =⇒ Rn(x) = 0

So,

x > 0: |Rn(x)| =
∣∣∣∣ ecxn+1

(n+ 1)!

∣∣∣∣ ≤ exxn+1

(n+ 1)!
n→∞−→ 0

x ≤ 0: |Rn(x)| =
∣∣∣∣ ecxn+1

(n+ 1)!

∣∣∣∣ ≤ |x|n+1

(n+ 1)!
n→∞−→ 0

Thus lim
n→∞

Rn(x) = 0 for all x, so the series converges to ex on (−∞,∞). Thus,

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2! + · · ·+ xn

n! + · · ·

This gives us a new∗ definition for the number e:

e =
∞∑
n=0

1
n! .

∗ Recall in Calc I we showed e = lim
x→0+

(1 + x)1/x using L’Hôpitals Rule.

The Remainder Estimation Theorem: If there is a positive constant M such that
∣∣f (n+1)(t)

∣∣ ≤M for all t between x
and a, inclusive, then the remainder term Rn(x) in Taylor’s Theorem satisfies the inequality

|Rn(x)| ≤M |x− a|
n+1

(n+ 1)! .

If this inequality holds for every n and the other conditions of Taylor’s Theorem are satisfied by f(x), then the series
converges to f(x).

Example 2: Show that the Taylor Series generated by f(x) = sin(x) at a = 0 converges to sin(x) for all x.

Recall that the Taylor Series generated by f(x) = sin(x) at a = 0 is
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1. Since for each n,
∣∣f (2n+1)(x)

∣∣ =

|cos(x)| ≤ 1 and
∣∣f (2n)

∣∣ = |sin(x)| ≤ 1, let M = 1. Then,

|R2n+1(x)| ≤ 1 · |x− 0|2n+2

(2n+ 2)!
n→∞−→ 0.

Thus the Taylor Series converges to f(x) = sin(x). That is,

sin(x) =
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1
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Using Taylor Series: Since every Taylor series is a power series, the operations of adding, subtracting and multiplying
Taylor series are all valid on the intersection of their intervals of convergence.

Example 3: Using known series, find the first few terms of the Taylor series for

1
3(2x+ x cos(x))

using power series operations.
We have,

1
3(2x+ x cos(x)) = 2

3x+ x

3 cos(x)

= 2
3x+ x

3
d

dx
sin(x)

= 2
3x+ x

3
d

dx

∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1

= 2
3x+ x

3

∞∑
n=0

(−1)n
(2n)! x

2n

= 2
3x+

∞∑
n=0

(−1)n
3 · (2n)!x

2n+1

= 2
3x+ x

3 −
x3

3 · 2! + x5

3 · 4! − · · ·

= x− x3

6 + x5

72 − · · ·

Example 4: For what values of x can we replace sin(x) by the polynomial x− x3

3! with an error of magnitude no greater
than 3× 10−4?
We use the fact that the Taylor series for sin(x) is an alternating series for every non-zero value of x. By the Alternating
Series Estimation Theorem (Section 10.6), the error in truncating

sin(x) = x− x3

3!

∣∣∣∣∣+ x5

5! − · · ·

is no greater than ∣∣∣∣x5

5!

∣∣∣∣ = |x|
5

120 .

So the error will be less than 3× 10−4 if

|x|5

120 < 3× 10−4 ⇐⇒ |x|5 < 360× 10−4 = 0.036 ⇐⇒ |x| < 5
√

0.036 ≈ 0.514.

So, if = −0.514 < x < 0.514, the error obtained from using x− x3

3! to approximate sin(x) will be less than 10× 10−4.

Moreover, by the Alternating Series Estimation Theorem, we know the estimate x− x3

3! is an underestimate of sin(x) when

x is positive, since x5

120 would be positive, and an overestimate if x is negative.
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Series

Evaluating Non-elementary Integrals: Taylor series can be used to express non-elementary integrals in terms of series.
Integrals like the one in the next example arise in the study of the diffraction of light.

Example 1: Express
ˆ

sin(x2) dx

as a power series.

sin(x) =
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1 =⇒ sin(x2) =
∞∑
n=0

(−1)n
(2n+ 1)! (x

2)2n+1 =
∞∑
n=0

(−1)n
(2n+ 1)!x

4n+2

So,

ˆ
sin(x2) dx =

ˆ ∞∑
n=0

(−1)n
(2n+ 1)!x

4n+2 dx = C +
∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)!x

4n+3

Example 2: Estimate

ˆ 1

0
sin(x2) dx

with an error of less than 0.001.
Using the previous example we see

ˆ 1

0
sin(x2) dx =

∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)!x

4n+3

∣∣∣∣∣
1

0

=
∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)! − [0] =

∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)!

We want to use the Alternating Series Estimation Theorem (section 10.6). So we want∣∣∣∣ (−1)n+1

(4(n+ 1) + 3) · (2(n+ 1) + 1)!

∣∣∣∣ < 0.001 =⇒ 1
(4n+ 7) · (2n+ 3)! < 0.001

=⇒ (4n+ 7) · (2n+ 3)! > 1000

By trial and error we obtain n = 1 works. So then
ˆ 1

0
sin(x2) dx ≈ 1

3 −
1

7 · 3! ≈ 0.310 .
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If we extend this to 5 terms, we obtain

ˆ 1

0
sin(x2) dx ≈ 1

3 −
1

7 · 3! + 1
11 · 5! −

1
15 · 7! + 1

19 · 9! ≈ 0.310268303.

This gives an error of about 1.08× 10−9. To guarantee this accuracy (using the error formula) for the Trapezium Rule, we
would need to use about 8000 subintervals!

Euler’s Identity: A complex number is a number of the form a+ bi, where a and b are real numbers and i =
√
−1. So

then

i =
√
−1 i2 = −1 i3 = −

√
−1 i4 = 1 i4n+k = ik i2n+k = (−1)nik.

If we substitute x = iθ into the Taylor series for ex ans use the relations above, we obtain

eiθ =
∞∑
n=0

(iθ)n
n! =

∞∑
n=0

(
(iθ)2n

(2n)! + (iθ)2n+1

(2n+ 1)!

)
(split into even and odd terms)

=
∞∑
n=0

(
(−1)nθ2n

(2n)! + (−1)niθ2n+1

(2n+ 1)!

)
(apply the indentities of i)

=
∞∑
n=0

(
(−1)n
(2n)! θ

2n + i
(−1)n

(2n+ 1)!θ
2n+1

)
(rewrite for foreshadowing)

=
∞∑
n=0

(−1)n
(2n)! θ

2n + i

∞∑
n=0

(−1)n
(2n+ 1)!θ

2n+1 (break up sum)

= cos(θ) + i sin(θ). (know things)

Euler’s Identity:11e
iθ = cos(θ) + i sin(θ)

This identity is actually amazing. You can use this identity to derive all of the angle sum formulas, so you never need to
remember them all! Also we see that eiπ = −1, which we can rewrite to obtain

1
1e

iπ + 1 = 01
1

which combines 5 of the most important constants in mathematics; e, π, i, 1 and 0.
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Common Taylor Series

1. 1
1− x 1 + x+ x2 + x3 + · · ·

∞∑
n=0

xn |x| < 1

2. 1
1 + x

1− x+ x2 − x3 + · · ·
∞∑
n=0

(−1)nxn |x| < 1

3. ex 1 + x+ x2

2! + x3

3! + · · ·
∞∑
n=0

xn

n! |x| <∞

4. sin(x) x− x3

3! + x5

5! −
x7

7! + · · ·
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1 |x| <∞

5. cos(x) 1− x2

2! + x4

4! −
x6

6! + · · ·
∞∑
n=0

(−1)n
(2n)! x

2n |x| <∞

6. ln(1 + x) x− x3

3 + x5

5 −
x7

7 + · · ·
∞∑
n=1

(−1)n−1

n
xn −1 < x ≤ 1

7. tan−1(x) x− x3

3 + x5

5 −
x7

7 + · · ·
∞∑
n=0

(−1)n
2n+ 1x

2n+1 |x| ≤ 1
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