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Section 8.1: Using Basic Integration
Formulas

A Review: The basic integration formulas summarise the forms of indefinite integrals for may of the functions we have
studied so far, and the substitution method helps us use the table below to evaluate more complicated functions involving
these basic ones. So far, we have seen how to apply the formulas directly and how to make certain u-substitutions.
Sometimes we can rewrite an integral to match it to a standard form. More often however, we will need more advanced
techniques for solving integrals. First, let’s look at some examples of our known methods.

Basic integration formulas

1.
ˆ
k dx = kx+ C (any number k) 12.

ˆ
tan(x) dx = ln | sec(x)|+ C

2.
ˆ
xn dx = xn+1

n+ 1 + C (n 6= −1) 13.
ˆ

cot(x) dx = ln | sin(x)|+ C

3.
ˆ 1
x
dx = ln |x|+ C 14.

ˆ
sec(x) dx = ln | sec(x) + tan(x)|+ C

4.
ˆ
ex dx = ex + C 15.

ˆ
csc(x) dx = − ln | csc(x) + cot(x)|+ C

5.
ˆ
ax dx = ax

ln(a) + C (a > 0, a 6= 1) 16.
ˆ

sinh(x) dx = cosh(x) + C

6.
ˆ

sin(x) dx = − cos(x) + C 17.
ˆ

cosh(x) dx = sinh(x) + C

7.
ˆ

cos(x) dx = sin(x) + C 18.
ˆ 1√

a2 − x2
dx = sin−1

(x
a

)
+ C (a > 0)

8.
ˆ

sec2(x) dx = tan(x) + C 19.
ˆ 1
a2 + x2 dx = 1

a
tan−1

(x
a

)
+ C (a > 0)

9.
ˆ

csc2(x) dx = − cot(x) + C 20.
ˆ 1
x
√
x2 − a2

dx = 1
a

sec−1
∣∣∣x
a

∣∣∣+ C (a > 0)

10.
ˆ

sec(x) tan(x) dx = sec(x) + C 21.
ˆ 1√

a2 + x2
dx = sinh−1

(x
a

)
+ C (a > 0)

11.
ˆ

csc(x) cot(x) dx = − csc(x) + C 22.
ˆ 1√

x2 − a2
dx = cosh−1

(x
a

)
+ C (x > a > 0)
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Example 1 - Substitution: Evaluate the integral

ˆ 5

3

2x− 3√
x2 − 3x+ 1

dx.

u = x2 − 3x+ 1

du = 2x− 3 dx

hi

u = (3)2 − 3(3) + 1 = 1

u = (5)2 − 3(5) + 1 = 11

ˆ 5

3

2x− 3√
x2 − 3x+ 1

dx =
ˆ 11

1

1√
u
du

=
ˆ 11

1
u−1/2 du

= 2u1/2

∣∣∣∣∣
11

1

= 2
√

11− 2
√

1

= 2
(√

11− 1
)

Example 2 - Complete the Square: Find
ˆ 1√

8x− x2
dx.

8x− x2 = −(x2 − 8x)

= −((x− 4)2 − 42)

= 42 − (x− 4)2

hi

u = x− 4

du = dx

ˆ 1√
8x− x2

dx =
ˆ 1√

42 − (x− 4)2
dx

=
ˆ 1√

42 − (u)2
du

= sin−1
(u

4

)
+ C

= sin−1
(
x− 4

4

)
+ C

Example 3 - Trig Identities: Calculate
ˆ

cos(x) sin(2x) + sin(x) cos(2x) dx.

hi

u = 3x

du = 3 dx
1
3 du = dx

ˆ
cos(x) sin(2x) + sin(x) cos(2x) dx =

ˆ
sin (x+ 2x) dx

=
ˆ

sin (3x) dx

=
ˆ 1

3 sin (u) du

= −1
3 cos (u) + C

= −1
3 cos (3x) + C
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Example 4 - Trig Identities: Find

ˆ π
4

0

1
1− sin(x) dx.ˆ π

4

0

1
1− sin(x) dx =

ˆ π
4

0

1
1− sin(x) ·

1 + sin(x)
1 + sin(x) dx

=
ˆ π

4

0

1 + sin(x)
1− sin2(x)

dx

=
ˆ π

4

0

1
cos2(x) + 1

cos(x)
sin(x)
cos(x) dx

=
ˆ π

4

0
sec2(x) + sec(x) tan(x) dx

= tan(x) + sec(x)
∣∣∣∣∣
π
4

0

= tan
(π

4

)
+ sec

(π
4

)
− (tan(0) + sec(0))

= 1 +
√

2− (0 + 1)

=
√

2

Example 5 - Clever Substitution Evaluate
ˆ 1

(1 +
√
x)3 dx.

u = 1 +
√
x

du = 1
2
√
x
dx

2
√
x du = dx

2(u− 1) du = dx

ˆ 1
(1 +

√
x)3 dx =

ˆ 2(u− 1)
u3 du

=
ˆ 2
u2 −

2
u3 du

=
ˆ

2u−2 − 2u−3 du

= −2u−1 + u−2 + C

= − 2
u

+ 1
u2 + C

= − 2
1 +
√
x

+ 1
(1 +

√
x)2 + C

Example 6 - Properties of Trig Integrals

ˆ π
2

−π2
x3 cos(x) dx.

f(x) = x3 =⇒ f(−x) = (−x)3 = −x3 = −f(x)

=⇒ x3 is an odd function

g(x) = cos(x) =⇒ f(−x) = cos(−x) = cos(x) = f(x)

=⇒ x3 is an even function

Putting these two facts together we see that x3 cos(x) is an odd function and is symmetric over the interval
[
−π2 ,

π
2
]
. Thus

(by Theorem 8, Section 5.6)

ˆ π
2

−π2
x3 cos(x) dx = 0
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Section 8.2: Techniques of Integration

A New Technique: Integration by parts is a technique used to simplify integrals of the form
ˆ
f(x)g(x) dx.

It is useful when one of the functions (f(x) or g(x)) can be differentiated repeatedly and the other function can be
integrated repeatedly without difficulty. The following are two such integrals:

ˆ
x cos(x) dx and

ˆ
x2ex dx.

Notice f(x) = x or f(x) = x2 can be differentiated repeatedly (they are even eventually zero) and g(x) = cos(x) and
g(x) = ex can be integrated repeatedly without difficulty.

An Application of the Product Rule: If f(x) and g(x) are differentiable functions of x, the product rule says that

d

dx
[f(x)g(x)] = f ′(x)g(x) + f(x)g′(x).

Integrating both sides and rearranging gives us the Integration by Parts formula!

ˆ
d

dx
[f(x)g(x)] dx =

ˆ
f ′(x)g(x) dx+

ˆ
f(x)g′(x) dx

=⇒
ˆ
f(x)g′(x) dx =

ˆ
d

dx
[f(x)g(x)] dx−

ˆ
f ′(x)g(x) dx

=⇒
ˆ
f(x)g′(x) dx = f(x)g(x)−

ˆ
f ′(x)g(x) dx

In differential form, let u = f(x) and v = g(x). Then,

Integration by Parts Formula:

ˆ
u dv = uv −

ˆ
v du.

Remember, all of the techniques that we talk about are supposed to make integrating easier! Even though this formula
expresses one integral in terms of a second integral, the idea is that the second integral,

´
v du, is easier to evaluate. The

key to integration by parts is making the right choice for u and v. Sometimes we may need to try multiple options before
we can apply the formula.
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Example 1: Find
ˆ
x cos(x) dx.

We have to decide what to assign to u and what to assign to dv. Our goal is to make the integral easier. One thing to bear
in mind is that whichever term we let equal u we need to differentiate - so if differentiating makes a part of the integrand
simpler that’s probably what we want! In this cases differentiating cos(x) gives − sin(x), which is no easier to deal with.
But differentiating x gives 1 which is simpler. So we have,

u = x dv = cos(x) dx

du = dx v = sin(x)

ˆ
x cos(x) dx = x sin(x)−

ˆ
sin(x) dx

= x sin(x) + cos(x) + C

Example 3 - Integration by Parts for Definite Integrals: Find the area of the region bounded by the curve y = xe−x

and the x-axis from x = 0 to x = 4.

4

A =
ˆ 4

0
xe−x dx

u = x dv = e−x dx

du = dx v = −e−x

ˆ 4

0
xe−x dx = −xe−x

∣∣∣∣∣
4

0

−
ˆ 4

0
−e−x dx

= −xe−x
∣∣∣∣∣
4

0

+
ˆ 4

0
e−x dx

=
(
−4e−4 − 0

)
− e−x

∣∣∣∣∣
4

0

= −4e−4 −
(
e−4 − 1

)
= −4e−4 −

(
e−4 − 1

)
= −5e−4 + 1
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Example 3: Evaluate
ˆ
x2ex dx.

Here we go through the same thought process. If u = ex then du = ex dx, which doesn’t make the problem any easier (though
it doesn’t make it any harder either). But in this case dv = x2 would give v = 1

3x
3 which arguably is not simpler that x2. So,

u = x2 dv = ex dx

du = 2x dx v = ex

ˆ
x2ex dx = x2ex − 2

ˆ
xex dx.

It’s at this point we see that we still cannot integrate the integral on the write easily. This is okay. Sometimes we may
have to apply the integration by parts formula more than once!

u = x dv = ex dx

du = dx v = ex

ˆ
x2ex dx = x2ex − 2

ˆ
xex dx

= x2ex − 2
[
xex −

ˆ
ex dx

]
= x2ex − 2xex + 2ex + C

=
(
x2 − 2x+ 2

)
ex + C

The previous technique works for any integral of the form
ˆ
xnemx dx, where n is any positive integer and m is any integer.

What if n was negative? Then this case we would set u = ex.

Example 4 - Tabular Method: In Example 2 we have to apply the Integration by Parts Formula multiple times. There
is a convenient way to “book-keep” our work. This is done by creating a table. Let’s see how by examining Example 2
again.
Evaluate

ˆ
x2ex dx.

Let f(x) = x2 and g(x) = ex. Then,

Differentiate f(x) Integrate g(x)

x2 ex

2x ex

2 ex

0 ex

+
−
+

Then the integral is,
ˆ
x2ex dx = +x2 · ex − 2x · ex + 2 · ex + C =

(
x2 − 2x+ 2

)
ex + C

We have actually used the integration by parts formula, but we have just made our lives easier by condensing the work into
a neat table. This method is extremely useful when Integration by Parts needs to be used over and over again.
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Example 5 - Recurring Integrals: Find the integral
ˆ
ex sin(x) dx.

We need to apply Integration by
Parts twice before we see something:

(1)

u = ex dv = sin(x)

du = ex dx v = − cos(x)

(2)

u = ex dv = cos(x)

du = ex dx v = sin(x)

ˆ
ex sin(x) dx = −ex cos(x) +

ˆ
ex cos(x) dx

= −ex cos(x) +
(
ex sin(x)−

ˆ
ex sin(x) dx

)
= −ex cos(x) + ex sin(x)−

ˆ
ex sin(x) dx

Notice that now the integral we are interested in,
ˆ
ex sin(x) dx, appears on both the

left and right hand side of the equation. So, if we add this integral to both sides we get

=⇒ 2
ˆ
ex sin(x) dx = ex (− cos(x) + sin(x))

=⇒
ˆ
ex sin(x) dx = ex (sin(x)− cos(x))

2

This “trick” comes up often when we are dealing with the product of two functions with “non-terminating” derivatives.
By this we mean that you can keep differentiating functions like ex and trig functions indefinitely and never reach 0.
Polynomials on the other hand will eventually “terminate” and their nth derivative (where n is the degree of the polynomial)
is identically 0.
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Example 6 - Challenge: Find the integral

1
π

ˆ π

0
x3 cos (nx) dx,

where n is a positive integer.
Let f(x) = x2 and g(x) = cos(nx). Then,

Differentiate f(x) Integrate g(x)

x3 cos(nx)
3x2 1

n sin(nx)
6x − 1

n2 cos(nx)
6 − 1

n3 sin(nx)
0 1

n4 cos(nx)

+
−
+
−

Then the integral is,

1
π

ˆ
x3 cos(nx) dx = 1

π

[
+x3 · 1

n
sin(nx)− 3x2 ·

(
− 1
n2

)
cos(nx) + 6x ·

(
− 1
n3

)
sin(nx)− 6 · 1

n4 cos(nx)
] ∣∣∣∣∣
π

0

= 1
π

[
x3

n
sin(nx) + 3x2

n2 cos(nx)− 6x
n3 sin(nx)− 6

n4 cos(nx)
] ∣∣∣∣∣
π

0

= 1
π

[(
0 + 3π2

n2 cos(nπ)− 0 + 6
n4

)
−
(

0 + 0− 0− 6
n4

)]
= 1
π

[
3π2(−1)n

n2 − 6(−1)n
n4 + 6

n4

]
= 3

π

π2n2(−1)n − 2(−1)n + 2
n4
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Section 8.3: Trigonometric Integrals -
Worksheet

Goal: By using trig identities combined with u-substitution, we’d like to find antiderivatives of the form
ˆ

sinm(x) cosn(x) dx

(for integer values of m and n). The goal of this worksheet1 is for you to work together in groups of 2-3 to discover the
techniques that work for these anti-derivatives.

Example 1 - Warm-up: Find
ˆ

cos4(x) sin(x) dx.

u = cos(x)

du = − sin(x) dx

ˆ
cos4(x) sin(x) dx = −

ˆ
u4 du

= −u
5

5 + C

= −cos5(x)
5 + C

Example 2: Find
ˆ

sin3(x) dx.

(Hint: Use the identity sin2(x) + cos2(x) = 1, then make a substitution.)

u = cos(x)

du = − sin(x) dx

ˆ
sin3(x) dx =

ˆ (
1− cos2(x)

)
sin(x) dx

= −
ˆ (

1− u2) du
= −u+ u3

3 + C

= − cos(x) + cos3(x)
3 + C

1Worksheet adapted from BOALA, math.colorado.edu/activecalc

http://math.colorado.edu/activecalc2/index.html
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Example 3: Find
ˆ

sin5(x) cos2(x) dx.

(Hint: Write sin5(x) as
(
sin2(x)

)2 sin(x).)

u = cos(x)

du = − sin(x) dx

ˆ
sin5(x) cos2(x) dx =

ˆ (
sin2(x)

)2 cos2(x) sin(x) dx

=
ˆ (

1− cos2(x)
)2 cos2(x) sin(x) dx

= −
ˆ (

1− u2)2 u2 du

= −
ˆ (

1− 2u2 + u4) du
= −
ˆ
u2 − 2u4 + u6 du

= −u
3

3 + 2u5

5 − u7

7 + C

= −cos3(x)
3 + 2 cos5(x)

5 − cos7(x)
7 + C

Example 4: Find
ˆ

sin7(x) cos5(x) dx.

(The algebra here is long. Only set up the substitution - you do not need to fully evaluate.)

u = cos(x)

du = − sin(x) dx

ˆ
sin7(x) cos5(x) dx =

ˆ (
sin2(x)

)3 cos5(x) sin(x) dx

=
ˆ (

1− cos2(x)
)3 cos5(x) sin(x) dx

= −
ˆ (

1− u2)3 u5 du

Example 5: In general, how would you go about trying to find
ˆ

sinm(x) cosn(x) dx,

where m is odd? (Hint: consider the previous three problems.)

u = cos(x)

du = − sin(x) dx

ˆ
sinm(x) cosn(x) dx =

ˆ (
sin2(x)

)(m−1)/2 cosn(x) sin(x) dx

=
ˆ (

1− cos2(x)
)(m−1)/2 cosn(x) sin(x) dx

= −
ˆ (

1− u2)(m−1)/2
un du
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Example 6: Note that the same kind of trick works when the power on cos(x) is odd. To check that you understand,
what trig identity and what u-substitution would you use to integrate

ˆ
cos3(x) sin2(x) dx?

sin2(x) + cos2(x) = 1

cos2(x) = 1− sin2(x)

u = sin(x)

du = cos(x) dx

ˆ
cos3(x) sin2(x) dx =

ˆ
cos2(x) sin2(x) cos(x) dx

=
ˆ (

1− sin2(x)
)

sin2(x) cos(x) dx

=
ˆ (

1− u2)u2 du

Example 7: Now what if the power on cos(x) and sin(x) are both even? Find
ˆ

sin2(x) dx,

in each of the following two ways:

(a) Use the identity sin2(x) = 1
2 (1− cos(2x)).

ˆ
sin2(x) dx =

ˆ 1
2 (1− cos(2x)) dx

= 1
2

ˆ
1− cos(2x) dx

= 1
2x−

1
4 sin(2x) + C

(b) Integrate by parts, with u = sin(x) and dv = sin(x) dx.

u = sin(x) dv = sin(x) dx

du = cos(x) dx v = − cos(x)

ˆ
sin2(x) dx

::::::::::

=
ˆ

sin(x) sin(x) dx

= − sin(x) cos(x)−
ˆ
− cos(x) cos(x) dx

= − sin(x) cos(x) +
ˆ

cos2(x) dx

= − sin(x) cos(x) +
ˆ

1− sin2(x) dx

= − sin(x) cos(x) + x−
ˆ

sin2(x) dx
::::::::::

=⇒ 2
ˆ

sin2(x) dx = − sin(x) cos(x) + x+ C

=⇒
ˆ

sin2(x) dx = x− sin(x) cos(x)
2 + C

(c) Show that your answers to parts (a) and (b) above are the same by giving a suitable trig identity.

sin(x) cos(x) = 1
22 sin(x) cos(x) = 1

2 sin(2x).
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(d) How would you evaluate the integral
ˆ

sin2(x) cos2(x) dx?

ˆ
sin2(x)
::::::

cos2(x) dx =
ˆ 1

2 (1− cos(2x))
:::::::::::::

· 1
2 (1 + cos(2x)) dx

= 1
4

ˆ
1− cos2(x) dx

= 1
4x−

1
4

ˆ
cos2(2x) dx

= 1
4x−

1
4

ˆ 1
2 (1 + cos(4x)) dx

= 1
4x−

1
8x−

1
8

ˆ
cos(4x) dx

= 1
8x−

1
32 sin(4x) + C

Example 8: Evaluate the integral in problem (2) above, again, but this time by parts using u = sin2(x) and dv− sin(x) dx.
(After this, you’ll probably need to do a substitution.)

u = sin2(x) dv = sin(x) dx

du = 2 sin(x) cos(x) dx v = − cos(x)

w = cos(x)

dw = − sin(x) dx

ˆ
sin3(x) dx =

ˆ
sin2(x) sin(x) dx

= − sin2(x) cos(x)−
ˆ
− cos(x) · 2 sin(x) cos(x) dx

= − sin2(x) cos(x) + 2
ˆ

cos2(x) sin(x) dx

= − sin2(x) cos(x)− 2
ˆ
w2 dw

= − sin2(x) cos(x)− 2u3

3 + C

= − sin2(x) cos(x)− 2 cos3(x)
3 + C

Example 9 - For fun: Can you show your answers to problem (2) and (8) above are the same? It’s another great
trigonometric identity.

− sin2(x) cos(x)− 2 cos3(x)
3 = −

(
1− cos2(x)

)
cos(x)− 2

3 cos3(x) = − cos(x) + cos3(x)− 2
3 cos3(x) = − cos(x) + cos3(x)

3

Example 10 - Further investigations: (especially for mathematics, physics and engineering majors) We also would
like to be able to solve integrals of the form ˆ

tanm(x) secn(x) dx.

These two functions play well with each other, since the derivative of tan(x) is sec2(x), the derivative of sec(x) is sec(x)|tan(x)
and since there is a Pythagorean identity relating them. It sometimes works to use u = tan(x) and it sometimes works to
use u = sec(x). Based on the values of m and n, which substitution should you use? Are there cases for which neither
substitution works? (See page 472 of the text.)
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Section 8.4: Trigonometric Substitution

Motivation: If we want to find the area of a circle or ellipse, we have an integral of the form
ˆ √

a2 − x2 dx

where a > 0. Regular substitution will not work here, observe:

u = a2 − x2

du = −2x dx←− extra factor of x . . .

Solution: Parametrise! We change x to a function of θ by letting x = a sin (θ) so,

√
a2 − x2 =

√
a2 − (a sin (θ))2 =

√
12 − a2 sin2 (θ) =

√
a2
(
1− sin2 (θ)

)
=
√
a2 cos2 (θ) = a |cos (θ)| .

Generally, we use an injective (one-to-one) function (so it has an inverse) to simplify calculations. Above, we ensure a sin (θ)
is invertible by restricting the domain to

[
−π2 ,

π
2
]
.

Common Trig Substitutions: The following is a summary of when to use each trig substitution.

Integral contains: Substitution Domain Identity

√
a2 − x2 x = a sin (θ)

[
−π2 ,

π
2
]

1− sin2 (θ) = cos2 (θ)

√
a2 + x2 x = a tan (θ)

(
−π2 ,

π
2
)

1 + tan2 (θ) = sec2 (θ)

√
x2 − a2 x = a sec (θ)

[
0, π2

)
sec2 (θ)− 1 = tan2 (θ)

If you are worried about remembering the identities, then don’t! They can all be derived easily, assuming you know
three basic ones (which by now you should):

sin2 (θ) + cos2 (θ) = 1, sec (θ) = 1
cos (θ) , tan (θ) = sin (θ)

cos (θ)

sin2 (θ) + cos2 (θ) = 1 =⇒ cos2 (θ) = 1− sin2 (θ)(
÷ cos2 (θ)

)
tan2 (θ) + 1 = sec2 (θ) =⇒ tan2 (θ) = sec2 (θ)− 1
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Example 1: Evaluate

ˆ √9− x2

x2 dx.

x = 3 sin (θ)

θ ∈
[
−π2 ,

π

2

]
dx = 3 cos (θ) dθ

ˆ √9− x2

x2 dx =
ˆ √

32 − 32 sin2 (θ)
32 sin2 (θ)

· 3 cos (θ) dθ

=
ˆ

�3
√

1− sin2 (θ)
��32 sin2 (θ)

· �3 cos (θ) dθ

=
ˆ √

cos2 (θ)
sin2 (θ)

· cos (θ) dθ

=
ˆ cos2 (θ)

sin2 (θ)
dθ

=
ˆ

cot2 (θ) dθ

=
ˆ

csc2 (θ)− 1 dθ

= − cot (θ)− θ + C

= −
√

32 − x2

x
− arcsin (θ) + C

How did we recover x?

x = 3 sin (θ) =⇒ x

3 = sin (θ)

adj.

hyp.
opp.

θ

=⇒

A

3
x

θ

A2 + x2 = 32

A2 = 32 − x2

A =
√

32 − x2

cot (θ) = 1
tan (θ) = adj.

opp. =
√

32 − x2

x

This is a common process in trig substitution. When you substitute back for your original variable, in this case x, you will
always be able to find the correct substitutions by drawing out and labelling a right triangle correctly.
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Example 2: Find
ˆ 1
x2
√
x2 + 4

dx.

x = 2 tan (θ)

θ ∈
(
−π2 ,

π

2

)
dx = 2 sec2 (θ) dθ

u = sin (θ)

du = cos (θ)

ˆ 1
x2
√
x2 + 4

dx =
ˆ 2 sec2 (θ)

22 tan2 (θ)
√

22 tan2 (θ) + 22
dθ

=
ˆ

�2 sec2 (θ)
22 tan2 (θ) �2

√
tan2 (θ) + 1

dθ

=
ˆ sec2 (θ)

22 tan2 (θ)
√

sec2 (θ)
dθ

=
ˆ sec (θ)

22 tan2 (θ)
dθ

= 1
4

ˆ cos (θ)
sin2 (θ)

dθ

= 1
4

ˆ 1
u2 du

= −1
4

1
u

+ C

= − 1
4 sin (θ) + C

= −1
4 csc (θ) + C

= −
√
x2 + 4
4x + C

How did we recover x?

x = 2 tan (θ) =⇒ x

2 = tan (θ)

adj.

hyp.
opp.

θ

=⇒

2

H
x

θ

H2 = x2 + 22

H =
√
x2 + 4

csc (θ) = 1
sin (θ) = hyp.

opp. =
√
x2 + 4
x
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Example 3: Evaluate
ˆ

x2
√

9− x2
dx.

x = 3 sin (θ)

θ ∈
(
−π2 ,

π

2

)
dx = 3 cos (θ) dθ

ˆ
x2

√
9− x2

dx =
ˆ 32 sin2 (θ)√

32 − 32 sin2 (θ)
· 3 cos (θ) dθ

=
ˆ 32 sin2 (θ)

�3
√

1− sin2 (θ)
· �3 cos (θ) dθ

=
ˆ 32 sin2 (θ)√

cos2 (θ)
· cos (θ) dθ

= 9
ˆ

sin2 (θ)

= 9
2

ˆ
1− cos (2θ) dθ

= 9
2

(
θ − 1

2 sin(2θ)
)

+ C

= 9
2 (θ − sin(θ) cos(θ)) + C

= 9
2

(
sin−1

(x
3

)
− x

3 ·
√

9− x2

3

)
+ C

How did we recover x?

x = 3 sin (θ) =⇒ x

3 = sin (θ)

adj.

hyp.
opp.

θ

=⇒

A

3
x

θ

32 = x2 +A2

A =
√

9− x2

cos (θ) = adj.
hyp. =

√
9− x2

x
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Section 8.5: Integration by Partial
Fractions

Our next technique: We can integrate some rational functions using u-substitution or trigonometric substitution, but
these methods do not always work. Our next method of integration allows us to express any rational function as a sum of
functions that can be integrated using methods with which we are already familiar. That is, we cannot integrate

1
x2 − x

as-is, but it is equivalent to
1
x
− 1
x− 1 ,

each term of which we can integrate.

Example 1: Our goal is to compute

ˆ
x− 7

(x+ 1) (x− 3) dx.

(a)
ˆ 1
x+ 1 dx = ln |x+ 1|+ C

(b) 2
x+ 1 −

1
x− 3 = 2 (x− 3)− (x+ 1)

(x+ 1) (x− 3) = 2x− 6− x− 1
(x+ 1) (x− 3) = x− 7

(x+ 1) (x− 3)

(c)
ˆ

x− 7
(x+ 1) (x− 3) dx =

ˆ 2
x+ 1 −

1
x− 3 dx = 2 ln |x+ 1| − ln |x− 3|+ C

Example 2: Compute
ˆ 10x− 31

(x− 1) (x− 4) dx.

(a) 7
x− 1 + 3

x− 4 = 7 (x− 4) + 3 (x− 1)
(x− 1) (x− 4) = 10x− 31

(x− 1) (x− 4)

(b)
ˆ 10x− 31

(x− 1) (x− 4) dx =
ˆ 7
x− 1 + 3

x− 4 dx = 7 ln |x− 1|+ 3 ln |x− 4|+ C

The previous two examples were nice since we were given a different expression of our integrand before hand. But what
about when we don’t? It is clear that the key step is decomposing our integrand into simple pieces, so how do we do it?
The next example outlines the method.
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Example 3: Goal: Compute
ˆ

x+ 14
(x+ 5) (x+ 2) dx.

Our first step is to decompose x+ 14
(x+ 5) (x+ 2) as

x+ 14
(x+ 5) (x+ 2) = ?

x+ 5 + ?
x+ 2 .

There is no indicator of what the numerators should be, so there is work to be done to find them. If we let the numerators
be variables, we can use algebra to solve. That is, we want to find constants A and B that make the equation below true
for all x 6= −5,−2.

x+ 14
(x+ 5) (x+ 2) = A

x+ 5 + B

x+ 2 .

We solve for A and B by cross multiplying and equating the numerators.

x+ 14
(x+ 5) (x+ 2) = A

x+ 5 + B

x+ 2 = A (x+ 2) +B (x+ 5)
(x+ 5) (x+ 2) =⇒ x+ 14 = A (x+ 2) +B (x+ 5)

= Ax+ 2A+Bx+ 5B

= (A+B)x+ 2A+ 5B
1 = A+B =⇒ B = 1−A

14 = 2A+ 5B

= 2A+ 5 (1−A)

= 2A+ 5− 5A

= 5− 3A

=⇒ 9 = −3A

=⇒ −3 = A

=⇒ B = 1− (−3) = 4

ˆ
x+ 14

(x+ 5) (x+ 2) dx =
ˆ
−3
x+ 5 + 4

x+ 2 dx

= −3 ln |x+ 5|+ 4 ln |x+ 2|+ C

Example 4: Find
ˆ

x+ 15
(3x− 4) (x+ 1) dx.

x+ 15
(3x− 4) (x+ 1) = A

3x− 4 + B

x+ 1 = A (x+ 1) +B (3x− 4)
(3x− 4) (x+ 1) =⇒ x+ 15 = A (x+ 1) +B (3x− 4)

= Ax+A+ 3Bx− 4B

= (A+ 3B)x+A− 4B

1 = A+ 3B =⇒ A = 1− 3B

15 = A− 4B

= (1− 3B)− 4B

= 1− 7B

=⇒ 14 = −7B

=⇒ −2 = B

=⇒ A = 1− 3 (−2) = 7

ˆ
x+ 15

(3x− 4) (x+ 1) dx =
ˆ 7

3x− 4 −
2

x+ 1 dx

= 7
3 ln |3x+ 5| − 2 ln |x+ 1|+ C
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Example 4 - An alternative approach: Find
ˆ

x+ 15
(3x− 4) (x+ 1) dx.

x+ 15
(3x− 4) (x+ 1) = A

3x− 4 + B

x+ 1 = A (x+ 1) +B (3x− 4)
(3x− 4) (x+ 1) =⇒ x+ 15 = A (x+ 1) +B (3x− 4)

Instead of expanding everything, comparing coefficients and solving a system of linear equations, sometimes it may be
helpful to plug in strategic values of x to solve. Good values to choose are those that are roots of the polynomials that
appear on the denominators of the fraction. Observe,

x = −1 : (−1) + 15 = A ((−1) + 1) +B (3(−1)− 4)

=⇒ 14 = 0− 7B

=⇒ −2 = B

x = 4
3 :

( 4
3
)

+ 15 = A
(( 4

3
)

+ 1
)

+B
(
3
( 4

3
)
− 4
)

=⇒ 49
3 = 7

3A+ 0

=⇒ 7 = A

ˆ
x+ 15

(3x− 4) (x+ 1) dx =
ˆ 7

3x− 4 −
2

x+ 1 dx = 7
3 ln |3x+ 5| − 2 ln |x+ 1|+ C

Example 5: Goal: Find
ˆ 5x− 2

(x+ 3)2 dx.

Here, there are not two different linear factors in the denominator. This CANNOT be expressed in the form

5x− 2
(x+ 3)2 = 5x− 2

(x+ 3)(x+ 3) 6=
A

x+ 3 + B

x+ 3 = A+B

x+ 3 .

However, it can be expressed in the form:

5x− 2
(x+ 3)2 = A

x+ 3 + B

(x+ 3)2 .

5x− 2
(x+ 3)2 = A

x+ 3 + B

(x+ 3)2 = A(x+ 3) +B

(x+ 3)2 =⇒ 5x− 2 = A(x+ 3) +B

x = −3 : 5(−3)− 2 = A ((−3) + 3) +B

=⇒ −17 = 0 +B

=⇒ −17 = B

5x− 2 = A(x+ 3)− 17

= Ax+ 3A− 17

=⇒ 5x = Ax

=⇒ 5 = A

ˆ 5x− 2
(x+ 3)2 dx =

ˆ 5
x+ 3 −

17
(x+ 3)2 dx = 5 ln |x+ 3|+ 17

x+ 3 + C
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Example 6: What if the denominator is an irreducible quadratic of the form x2 + px+ q? That is, it can not be factored
(does not have any real roots). In this case, suppose that

(
x2 + px+ q

)n is the highest power of this factor that divides the
denominator. Then, to this factor, assign the sum of the n partial fractions:

B1x+ C1

(x2 + px+ q) + B1x+ C1

(x2 + px+ q)2 + B1x+ C1

(x2 + px+ q)3 + · · ·+ B1x+ C1

(x2 + px+ q)n .

Compute
ˆ

−2x+ 4
(x2 + 1)(x− 1)2 dx.

−2x+ 4
(x2 + 1)(x− 1)2 = Ax+B

x2 + 1 + C

x− 1 + D

(x− 1)2 = (Ax+B) (x− 1)2 + C(x2 + 1)(x− 1) +D(x2 + 1)
(x2 + 1)(x− 1)2

=⇒ −2x+ 4 = (Ax+B) (x− 1)2 + C(x2 + 1)(x− 1) +D(x2 + 1)

There are four unknowns here, A, B, C and D. In this case we’re going to want to minimise the amount of work we do here. In
general it is going to be beneficial to solve for as many coefficients as we can by plugging in numbers, and then expand everything to
compare coefficient after reducing the workload.

x = 1 : −2(1) + 4 = (Ax+B)((1)− 1)2 + C((1)2 + 1)((1)− 1) +D((1)2 + 1)

=⇒ 2 = 0 + 0 + 2D

=⇒ 1 = D

So we got one coefficient this way. That’s better than nothing! Now if we use this new information and then rearrange a little we
end up with less solving to do. This does require you however to be comfortable with algebra.

=⇒ −2x+ 4 = (Ax+B) (x− 1)2 + C(x2 + 1)(x− 1) + (x2 + 1)

=⇒ −x2 − 2x+ 3 = (Ax+B) (x− 1)2 + C(x2 + 1)(x− 1)

−(x2 + 2x− 3) =

−(x− 1)(x+ 3) =

Now we have already seen what happens when x = 1, so we can go right ahead and divide by the (x−1) term that appears on both sides.

=⇒ −x− 3 = (Ax+B) (x− 1) + C(x2 + 1)

= Ax2 +Bx−Ax−B + Cx2 + C

= (A+ C)x2 + (B −A)x+ C −B

Now we can go through and set up equations and solve by coef-
ficients. When there are lots of coefficients it is a good idea of
coming up with a way to book-keep your algebra - it can get very
messy if you don’t. Below is just one way you can do it.

(1) 0 = A +C
(2) −1 = −A +B
(3) −3 = −B +C

 (2)+(3)=⇒

(1) 0 = A +C
(2) −4 = −A +C
(3) −3 = −B +C

 (1)+(2)=⇒

(1) −4 = 2C
(2) −4 = −A +C
(3) −3 = −B +C



=⇒ −4 = 2C =⇒ −2 = C

=⇒ −4 = −A− 2 =⇒ 2 = A

=⇒ −3 = −B − 2 =⇒ 1 = B, So . . .

ˆ
−2x+ 4

(x2 + 1)(x− 1)2 dx =
ˆ

2x+ 1
x2 + 1 −

2
x− 1 + 1

(x− 1)2 dx

=
ˆ

2x
x2 + 1 + 1

x2 + 1 −
2

x− 1 + 1
(x− 1)2 dx

= ln(x2 + 1) + tan−1(x)− 2 ln |x− 1| − 1
x− 1 + C
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Summary: Method of Partial Fractions when f(x)
g(x) is proper (deg f(x) < deg g(x))

1. Let x− r be a linear factor of g(x). Suppose that (x− r)m is the highest power of x− r that divides g(x). Then, to
this factor, assign the sum of the m partial fractions:

A1

(x− r) + A2

(x− r)2 + A3

(x− r)3 + · · ·+ Am
(x− r)m .

Do this for each distinct linear factor of g(x).

2. Let x2 + px + q be an irreducible quadratic factor of g(x) so that x2 + px + q has no real roots. Suppose that
(x2 + px+ q)n is the highest power of this factor that divides g(X). Then, to this factor, assign the sum of the n
partial fractions:

B1x+ C1

(x2 + px+ q) + B1x+ C1

(x2 + px+ q)2 + B1x+ C1

(x2 + px+ q)3 + · · ·+ B1x+ C1

(x2 + px+ q)n .

Do this for each distinct quadratic factor of g(x).

3. Continue with this process with all irreducible factors, and all powers. The key things to remember are

(i) One fraction for each power of the irreducible factor that appears

(ii) The degree of the numerator should be one less than the degree of the denominator

4. Set the original fraction f(x)
g(x) equal to the sum of all these partial fractions. Clear the resulting equation of fractions

and arrange the terms in decreasing powers of x.

5. Solved for the undetermined coefficients by either strategically plugging in values or comparing coefficients of powers
of x.
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Section 8.7: Numerical Integration

What to do when there’s no nice antiderivative? The antiderivatives of some functions, like sin(x2), 1/ ln(x) and
√

1 + x4 have no elementary formulas/ When we cannot find a workable antiderivative for a function f(x) that we have to
integrate, we can partition the interval of integration, replace f(x) by a closely fitting polynomial on each subinterval,
integrate the poynomials and add the results to approximate the definite integral of f(x). This is an example of numerical
integration. There are many methods of numerical integration but we will study only two: the Trapezium Rule and
Simpson’s Rule.

Trapezoidal Approximations: As the name implies, the Trapezium Rule for the value of a definite integral is based on
approximating the region between a curve and the x-axis with trapeziums instead of rectangles - which, if you recall, we
studied when we looked at Riemann integration in Calculus I.

f(x)

a := x0 x1 x2 x3 x4 =: b

y0 y1 y2 y3 y4

∆x ∆x ∆x ∆x

. . .

f(x)

a := x0 x1 x2 xn−2 xn−1 xn =: b. . .

Assume the length of each subinterval is ∆x = b− a
n

. Then the area of the trapezium that lies above the x-axis in the ith

subinterval is Ti = δx

2 (yi−1 + yi) where yi−1 = f (xi−1) and yi = f (xi). Then the area of the under the curve and above
the x-axis is approximated by the sum of the trapeziums:

T = ∆x
2 (y0 + y1) + ∆x

2 (y1 + y2) + · · ·+ ∆x
2 (yn−1 + yn)

= ∆x
2 (y0 + y1 + y1 + y2 + · · ·+ yn−2 + yn−1 + yn−1 + yn)

= ∆x
2 (y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

= ∆x
2

(
y0 + yn + 2

n−1∑
i=1

yi

)

= ∆x
2

(
f(x0) + f(xn) + 2

n−1∑
i=1

f (xi)
)
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The Trapezium Rule: To approximate
ˆ b

a

f(x) dx, use

T = ∆x
2 (y0 + 2y1 + 2y2 + · · ·+ 2yn−1 + yn)

= ∆x
2

(
f(x0) + f(xn) + 2

n−1∑
i=1

f (xi)
)
,

where the y’s are the values of f at the partition points

x0 := a, x1 := a+ ∆x, x2 := a+ 2∆x, . . . , xn−1 := a+ (n− 1)∆x, xn := a+ n∆x = b,

and ∆x = b− a
n

.

Example 1: Use the Trapezium Rule with n = 4 to estimate
ˆ 2

1
x2 dx. Compare the estimate with the exact value.

Partition the interval [1, 2] into 4 subintervals:

∆x = 2− 1
4

= 1
4

x0 = a

= 1

= 4
4

x1 = a+ ∆x

= 1 + 1 · 1
4

= 5
4

x2 = a+ 2∆x

= 1 + 2 · 1
4

= 6
4

x3 = a+ 3∆x

= 1 + 3 · 1
4

= 7
4

x4 = a+ 4∆x

= 1 + 4 · 1
4

= 8
4

Now use these points together with the formula for the Trapezium Rule:

T = ∆x
2 (y0 + 2y1 + 2y2 + 2y3 + y4)

= 1/4
2

(
f

(
4
4

)
+ 2f

(
5
4

)
+ 2f

(
6
4

)
+ 2f

(
7
4

)
+ f

(
8
4

))
= 1

8

(
16
16 + 225

16 + 236
16 + 249

16 + 64
16

)
= 1

128 (16 + 50 + 72 + 98 + 64)

= 1
128 (300)

= 75
32

ˆ 2

1
x2 dx = 1

3x
3

∣∣∣∣∣
2

1

= 1
3
(
23 − 13)

= 1
3 (8− 1)

= 7
3

75
32 −

7
3 = 225

96 −
224
96 = 1

96 .

So the approximation overestimated the actual area by 1
96 , which is pretty good considering we only used 4 trapeziums.

Just like when we looked at Riemann sums, using more trapeziums results in a better approximation.
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Parabolic Approximations: Instead of using the straight-line segments that produced the trapeziums, we can use
parabolas to approximate the definite integral of a continuous function. We partition the interval [a, b] into n subintervals
of equal length ∆x = b− a

n
but this time we require n to be an even number. On each consecutive pair of intervals

we approximate the curve y = f(x) ≥ 0 by a parabola. A typical parabola passed through three consecutive points:
(xi−1, yi−1), (xi, yi) and (xi+1, yi+1) on the curve.

f(x)

a := x0 x1 x2 x3 x4 =: b

n = 4 :

f(x)

a := x0 x1 x2 x3 x4 x5 x6 x7 x8 =: b

n = 8 :

So how do we compute the area under each parabola y = Ax2 +Bx+ C? By translating we can assume that the centre
point of our parabola is at xi = 0

The area under the parabola and above the x-axis is given by

Si =
ˆ ∆x

−∆x
Ax2 +Bx+ C dx

= Ax3

3 + Bx2

2 + Cx

∣∣∣∣∣
∆x

−∆x

= A(∆x)3

3 + B(∆x)2

2 + C(∆x)−
[
A(−∆x)3

3 + B(−∆x)2

2 + C(−∆x)
]

= 2A∆x3

3 + 2C∆x

= ∆x
3 (2A∆x+ 6C)

−∆x 0 ∆x

(−∆x, yi−1)

(0, yi)

(∆x, yi+1)

yi−1 = A∆x2 −B∆x+ C

yi = C

yi+1 = A∆x2 +B∆x+ C

 =⇒ yi−1 + 4yi + yi+1 =
(
A∆x2 −B∆x+ C

)
+ 4C +

(
A∆x2 +B∆x+ C

)
= 2A∆x+ 6C

=⇒ Si = ∆x
3 (yi−1 + 4yi + yi+1)

So if we sum up the areas under all of the parabolas, we obtain our approximation.
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Simpson’s Rule: To approximate
ˆ b

a

f(x) dx, use

S = ∆x
3 (y0 + 4y1 + 2y2 + 4y3 + · · ·+ 2yn−2 + 4yn−1 + yn)

= ∆x
3

f (x0) + f (xn) + 2

n−1
2∑
i=1

f (x2i−1) + 2f (x2i)

 ,

where the y’s are the values of f at the partition points

x0 := a, x1 := a+ ∆x, x2 := a+ 2∆x, . . . , xn−1 := a+ (n− 1)∆x, xn := a+ n∆x = b,

and ∆x = b− a
n

with n an even number.

Example 2: Use the Simpson’s Rule with n = 4 to approximate
ˆ 2

0
5x4 dx. Compare the estimate with the exact value.

Partition the interval [1, 2] into 4 subintervals:

∆x = 2− 0
4

= 1
2

x0 = a

= 0

= 0
2

x1 = a+ ∆x

= 0 + 1 · 1
2

= 1
2

x2 = a+ 2∆x

= 0 + 2 · 1
2

= 2
2

x3 = a+ 3∆x

= 0 + 3 · 1
2

= 3
2

x4 = a+ 4∆x

= 0 + 4 · 1
2

= 4
2

Now use these points together with the formula for Simpson’s Rule:

S = ∆x
3 (y0 + 4y1 + 2y2 + 4y3 + y4)

= 1/2
3

(
f

(
0
2

)
+ 4f

(
1
2

)
+ 2f

(
2
2

)
+ 4f

(
3
2

)
+ f

(
4
2

))
= 1

6

(
5 0

16 + 4 · 5 1
16 + 2 · 516

16 + 4 · 581
16 + 5128

16

)
= 5

96 (0 + 4 + 32 + 324 + 256)

= 5
96 (616)

= 385
12

ˆ 2

0
5x4 dx = x5

∣∣∣∣∣
2

0

= 25 − 05

= 32− 0

= 32

385
12 − 32 = 385

12 −
384
12 = 1

12 .

So the approximation overestimated the actual area by 1
12 , which is pretty good considering we only used 2 parabolas.

Just like Riemann sums and the Trapezium rule, using more parabolas results in a better approximation. In fact, of the
three rules Simpson’s Rule gives the best approximation. This can be seen by looking at the error estimates.
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Error Estimates in the Trapezium and Simpson’s Rules If f ′′(x) is continuous and M is any upper bound for the
values of |f ′′(x)| on [a, b], then the error ET in the Trapezium Rule for approximating the definite integral of f(x) over the
interval [a, b] using n trapeziums satisfies the inequality

|ET | ≤
M(b− a)3

12n2 .

If f (4)(x) is continuous and M is any upper bound for the values of |f (4)(x)| on [a, b], then the error ES in Simpson’s Rule
for approximating the definite integral of f(x) over the interval [a, b] using n

2 parabolas satisfies the inequality

|ES | ≤
M(b− a)5

180n4 .

Example 3: Find an upper bound for the error in estimating
ˆ 2

0
5x4 dx using Simpson’s Rule with n = 4. What value of

n should we pick so that the error is within 0.001 of the true value?

First we differentiate f(x) 4 times and check that it is continuous on the interval [0, 2].

f(x) = 5x4

f ′(x) = 20x3

f ′′(x) = 60x2

f ′′′(x) = 120x

f (4)(x) = 120

This is a constant function, so it is continuous on our interval. Further

|f (4)(x)| = 120 ≤ 120 for all x ∈ [0, 2].

Thus M = 120 works as a bound. So, with n = 4, the error is bounded by:

|ES | ≤
M(b− a)5

180n4 = 120(2− 0)5

180(4)4 = 120 · 25

180 · 28 = 1
3 · 22 = 1

12 .

To achieve an approximation with |ES | ≤ 0.001, we again find a bound for M but this time we solve the inequality for n.

M(b− a)5

180n4 = 120(2− 0)5

180n4 = 26

3n4 ≤ 0.001

=⇒ 26

3 ≤
1

1000n
4

=⇒ 26 · 1000
3 ≤ n4

=⇒ 28 · 2 · 53

3 ≤ n4

=⇒ 4 4

√
2 · 53

3 ≤ n

So setting n ≥ 4 4
√

2·53

3 ≈ 12.086 would ensure an approximation of the desired accuracy.
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Switching up the Limits of Integration: Up until now, we have required two properties of definite integral:

1. the domain of integration, [a, b], is finite

2. the range of the integrand is finite on this domain.

We will now see what happens if we allow the domain or range to be infinite!

Infinite Limits of Integration: Let’s consider the infinite region (unbounded on the right) that lies under the curve
y = e−x/2 in the first quadrant.

f(x) = e−x/2

First, we examine what the area looks like over finite intervals. That is, we integrate over [0, b].

A(b) :=
ˆ b

0
e−x/2 dx = −2e−x/2

∣∣∣∣∣
b

0

= −2e−b/2 −
[
−2e−0/2

]
= 2

(
1− e−b/2

)
.

Now we have an expression for the area over a finite integral, we can let b −→∞ by calculating the limit of this expression.

A = lim
b→∞

A(b) = lim
b→∞

2
(

1− e−b/2
)

= 2 (1− 0) = 2.

So,

ˆ ∞
0

e−x/2 dx = lim
b→∞

ˆ b

0
e−x/2 dx = 2.

So this is how we deal with infinite limits of integration - with a limit! Remember those?



Section 8.8: Improper Integrals MATH 142

Definition: Integrals with infinite limits of integration are called improper integrals of Type I.

1. If f(x) is continuous on [a,∞), then

ˆ ∞
a

f(x) dx = lim
b→∞

ˆ b

a

f(x) dx.

2. If f(x) is continuous on (−∞, b], then

ˆ b

−∞
f(x) dx = lim

a→∞

ˆ b

−a
f(x) dx.

3. If f(x) is continuous on (−∞,∞), then
ˆ ∞
−∞

f(x) dx =
ˆ c

−∞
f(x) dx+

ˆ ∞
c

f(x) dx,

where c is any real number.

In each case, if the limit is finite we sat that the improper integral converges and that the limit is the

value of the improper integral. If the limit fails to exist, the improper integral diverges

Any of the integrals in the above definition can be interpreted as an area if f(x) ≥ 0 on the interval of integration. If
f(x) ≥ 0 and the improper integral diverges, we say the area under the curve is infinite.

Example 1: Evaluate
ˆ ∞

1

ln(x)
x2 dx.

u = ln(x) dv = 1
x2 dx

du = 1
x
dx v = − 1

x

ˆ b

1

ln(x)
x2 dx = − ln(x)

x

∣∣∣∣∣
b

1

−
ˆ b

1
− 1
x2 dx

= − ln(x)
x
− 1
x

∣∣∣∣∣
b

1

= − ln(b)
b
− 1
b
−
[
− ln(1)

1 − 1
1

]
= − ln(b)

b
− 1
b

+ 1Now we take a limit,

ˆ ∞
1

ln(x)
x2 dx = lim

b→∞

ˆ b

1

ln(x)
x2 dx = lim

b→∞

[
− ln(b)

b
− 1
b

+ 1
]

= lim
b→∞

[
− ln(b)

b

]
− 0 + 1 L’H= lim

b→∞

[
−1/b

1

]
+ 1 = 0 + 1 = 1

L’Hôpital’s Rule Suppose that f(a) = g(a) = 0, that f(x) and g(x) are differentiable on an open interval I containing a
and that g′(x) 6= 0 on I if x 6= a. Then

lim
x→a

f(x)
g(x) = lim

x→a

f ′(x)
g′(x) ,

assuming that the limit on the left and right both exist.
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Example 2: Evaluate
ˆ ∞
−∞

1
1 + x2 dx.

According to part 3 of our definition, we can choose any real number c and split this integral into two integrals and then
apply parts 1 and 2 to each piece. Let’s choose c = 0 and write

ˆ ∞
−∞

1
1 + x2 dx =

ˆ 0

−∞

1
1 + x2 dx+

ˆ ∞
0

1
1 + x2 dx.

Now we will evaluate each piece separately.

ˆ 0

−∞

1
1 + x2 dx = lim

a→−∞

ˆ 0

a

1
1 + x2 dx

= lim
a→−∞

tan−1(x)
∣∣∣∣∣
0

1

= lim
a→−∞

tan−1(0)− tan−1(a)

= lim
a→−∞

− tan−1(a)

= π

2 ,

ˆ ∞
0

1
1 + x2 dx = lim

b→∞

ˆ b

0

1
1 + x2 dx

= lim
b→∞

tan−1(x)
∣∣∣∣∣
b

0

= lim
b→∞

tan−1(b)− tan−1(0)

= lim
b→∞

tan−1(b)

= π

2 .

So,

ˆ ∞
−∞

1
1 + x2 =

ˆ 0

−∞

1
1 + x2 dx+

ˆ ∞
0

1
1 + x2 dx = π

2 + π

2 = π

Since 1/(1 + x2) > 0 on R, the improper integral can be interpreted as the (finite) area between the curve and the x-axis.

x

y

0

Area = π
y = 1

1 + x2
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A Special Example: For what values of p does the integral
ˆ ∞

1

1
xp

dx

converge? When the integral does converge, what is its value?

We split this investigation into two cases; when p 6= 1 and when p = 1.

If p 6= 1:

ˆ ∞
1

1
xp

dx = lim
b→∞

ˆ b

1
x−p dx

= lim
b→∞

x−p+1

−p+ 1

∣∣∣∣∣
b

1

= lim
b→∞

1
1− p ·

1
xp−1

∣∣∣∣∣
b

1

= lim
b→∞

[
1

1− p

(
1

bp−1 − 1
)]

=

 1
p−1 , p > 1

∞, p < 1.

If p = 1:

ˆ ∞
1

1
x
dx = lim

b→∞

ˆ b

1

1
x
dx

= lim
b→∞

ln(x)
∣∣∣∣∣
b

1

= lim
b→∞

[ln(b)− ln(1)]

= lim
b→∞

ln(b) =∞

Combining these two results we have
ˆ ∞

1

1
xp

dx =

 1
p−1 , p > 1

∞, p ≤ 1

Integrands with Vertical Asymptotes: Another type of improper integral that can arise is when the integrand has a
vertical asymptote (infinite discontinuity) at a limit of integration or at a point on the interval of integration. We apply a
similar technique as in the previous examples of integrating over an altered interval before obtaining the integral we want
by taking limits.

Example 4: Investigate the convergence of

ˆ 1

0

1√
x
dx.

First we find the integral over the region [a, 1] where 0 < a ≤ 1.

ˆ 1

a

1√
x
dx =

ˆ 1

a

x−1/2 dx = 2x1/2

∣∣∣∣∣
1

a

= 2
√
x

∣∣∣∣1
a

= 2− 2
√
a = 2(1−

√
a).

Then we find the limit as a→ 0+:

lim
a→0+

ˆ 1

a

1√
x
dx = lim

a→0+
2
(
1−
√
a
)

= 2.

Therefore,

ˆ 1

0

1√
x
dx = lim

a→0+

ˆ 1

a

1√
x
dx = 2
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Definition: Integrals of functions that become infinite at a point within the interval of integration are called improper
integrals of Type II.

1. If f(x) is continuous on (a, b] and discontinuous at a, then

ˆ b

a

f(x) dx = lim
c→a+

ˆ a

c

f(x) dx.

2. If f(x) is continuous on [a, b) and discontinuous at b, then

ˆ b

a

f(x) dx = lim
c→b−

ˆ c

a

f(x) dx.

3. If f(x) is discontinuous at c, where a < c < b, and continuous on [a, c) ∪ (c, b], then

ˆ b

a

f(x) dx =
ˆ c

a

f(x) dx+
ˆ b

c

f(x) dx.

In each case, if the limit is finite we sat that the improper integral converges and that the limit is the

value of the improper integral. If the limit fails to exist, the improper integral diverges

Example 5: Investigate the convergence of

ˆ 1

0

1
1− x dx.

ˆ 1

0

1
1− x dx = lim

b→1−

ˆ b

0

1
1− x dx

= lim
b→1−

−
ˆ b

0

1
x− 1 dx

= lim
b→1−

− ln |x− 1|
∣∣∣∣∣
b

0

= lim
b→1−

− ln(x− 1)
∣∣∣∣∣
b

0

= lim
b→1−

− ln(1− b)

= − (−∞)

= ∞
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Tests for Convergence: When we cannot evaluate an improper integral directly, we try to determine whether it converges
of diverges. If the integral diverges, we are done. If it converges we can use numerical methods to approximate its value.
The principal tests for convergence or divergence are the Direct Comparison Test and the Limit Comparison Test.

Direct Comparison Test for Integrals: If 0 ≤ f(x) ≤ g(x) on the interval (a,∞], where a ∈ R, then,

1. If
ˆ ∞
a

g(x) dx converges, then so does
ˆ ∞
a

f(x) dx.

2. If
ˆ ∞
a

f(x) dx diverges, then so does
ˆ ∞
a

g(x) dx.

Why does this make sense?

1. If the area under the curve of g(x) is finite and f(x) is bounded above by g(x) (and below by 0), then the area under
the curve of f(x) must be less than or equal to the area under the curve of g(x). A positive number less that a finite
number is also finite.

2. If the area under the curve of f(x) is infinite and g(x) is bounded below by f(x), then the area under the curve of
g(x) must be “less than or equal to” the area under the curve of g(x). Since there is no finite number “greater than”
infinity, the area under g(x) must also be infinite.

Example 6: Determine if the following integral is convergent or divergent.
ˆ ∞

2

cos2(x)
x2 dx.

We want to find a function g(x) such that for some a ∈ R, f(x) = cos2(x)
x2 ≤ g(x) or f(x) = cos2(x)

x2 ≥ g(x) for all x ≥ a.
One way we can do this is by finding bounds for f(x). Since 0 ≤ cos2(x) ≤ 1 for all x,

cos2(x)
x2 ≤ 1

x2 .

So then we can use g(x) := 1
x2 . So,

0 ≤
ˆ ∞

2

cos2(x)
x2 dx ≤

ˆ ∞
2

1
x2 dx = lim

b→∞

ˆ b

2

1
x2 dx = lim

b→∞

(
−1
b
−
(
−1

2

))
= 1

2 .

So
ˆ ∞

2

cos2(x)
x2 dx converges.

Example 7: Determine if the following integral is convergent of divergent.
ˆ ∞

3

1
x− e−x

dx.

Since x ≥ x− e−x, f(x) := 1
x
≤ 1
x− e−1 =: g(x) for all x ≥ 3. So,

0 ≤
ˆ ∞

3
f(x) dx ≤

ˆ ∞
3

g(x) dx.

By the Direct Comparison Test then,
ˆ ∞

3

1
x− e−x

dx diverges since
ˆ ∞

3

1
x
dx diverges.
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Limit Comparison Test for Integrals: If the positive functions f(x) and g(x) are continuous on [a,∞), and if

lim
x→∞

f(x)
g(x) = L, 0 < L <∞,

then
ˆ ∞
a

f(x) dx and
ˆ ∞
a

g(x) dx

both converge or diverge.

Why does this make sense? The convergence is really only dependent on the “tail” of the integral. That is, the convergence
is dictated by what happens “at infinity.” If for sufficiently large values of x, f(x) ≈ Lg(x) and one of the two integrals
converges, then the other one should also converge, since it is only off by “about a scalar multiple.” The same goes for
diverging, if one diverges, then multiplying it by a positive number won’t suddenly make it converge, so the other one
should also diverge.

Example 8: Show that
ˆ ∞

1

1
1 + x2 dx

converges.

Let f(x) := 1
1 + x2 and g(x) := 1

x2 . Then,

lim
x→∞

f(x)
g(x) = lim

x→∞

x2

1 + x2 = lim
x→∞

1 + x2 − 1
1 + x2 = lim

x→∞

(
1− 1

1 + x2

)
= 1.

So, by the Limit Comparison Test, the integral
ˆ ∞

1

1
1 + x2 dx converges.

Example 9: Show that
ˆ ∞

1

1− e−x
x

dx

dinverges.

Let f(x) := 1− e−x
x

and g(x) := 1
x
. Then,

lim
x→∞

f(x)
g(x) = lim

x→∞

(
1− e−x

)
= 1.

So, by the Limit Comparison Test, the integral
ˆ ∞

1

1− e−x
x

dx diverges.
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Definition: A sequence is a list of numbers written in a specific order. We index them with positive integers,

a1, a2, a3, a4, . . . , an, . . . .

The order is important here, for example 2, 4, 6, 8, . . . is not the same as 4, 2, 6, 8, . . . .

A sequence may be finite or infinite. We will be looking specifically at infinite sequences which we will denote by {an}∞n=1.

Examples:

(a)
{

n

n+ 1

}∞
n=1

a1 = 1
1 + 1 = 1

2 , a2 = 2
2 + 1 = 2

3 , a3 = 3
3 + 1 = 3

4 , . . .

(b)
{

(−1)n(n+ 1)
3n

}∞
n=1

a1 = (−1)1(1 + 1)
31 = −2

3 , a2 = (−1)2(2 + 1)
32 = 1

3 , a3 = (−1)3(3 + 1)
33 = −4

27 , . . .

(c) Fibonacci Sequence: (a recursively defined sequence)
f1 = 1

f2 = 1

fn = fn−1 + fn−2, n ≥ 3

f3 = f2 + f1 = 1 + 1 = 2,
f4 = f3 + f2 = 2 + 1 = 3,
f5 = f4 + f3 = 3 + 2 = 5,
f6 = f5 + f4 = 5 + 3 = 8, . . .

Definition: (Precise Definition of a Limit of a Sequence) The sequence {an}∞n=1 converges to the number L if for
every ε > 0 there exists an integer N such that

for all n ≥ N |an − L| < ε.

If no such number L exists, we say that {an} diverges.

Definition: (Friendly Definition of a Limit of a Sequence) The sequence {an}∞n=1 converges to the number L if

lim
n→∞

an = L.

If no such number L exists, we say that {an} diverges.
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Visualising a Sequence: Plot the sequence
{

1
n

}∞
n=1

in R2. What do you notice?

an

n

1

1
2
1
3 ...

1 2 3 4 5 6 7 8 9 10

From the plot above it looks as if the sequence is tending towards 0. It seems that plotting sequences looks a lot like
plotting a function. In fact, we can use our knowledge of functions to infer things about sequences.

Theorem: (Continuous Function Theorem) If limx→∞ f(x) = L and f(n) = an whenever n is a positive integer, then
limn→∞ an = L.

We know that f(x) = 1
x satisfies f(n) = an for every positive integer n, so then

lim
n→∞

1
n

= lim
x→∞

1
x

= 0.

In truth, the limit of this sequence is clear without invoking the power of this theorem. But, the theorem is still a great
tool that we can use for more complicated sequences.

Definition: limn→∞ an =∞ means that for every positive integer M , there exists an integer N such that if n ≥ N , then
an > M .

Limit Rules for Sequences: (i.e. the limit rules you already know for functions)
If an −→ L, bn −→M , then:

1. Sum Rule: lim
n→∞

(an + bn) = L+M ,

2. Constant Rule: lim
n→∞

c = c for any c ∈ R,

3. Product Rule: lim
n→∞

an · bn = L ·M ,

4. Quotient Rule: lim
n→∞

an
bn

= L

M
, if M 6= 0

5. Power Rule: lim
n→∞

apn = Lp, if p > 0, an > 0

Squeeze Theorem: Let {an}∞n=1, {bn}
∞
n=1 and {cn}∞n=1 be three sequences such that there exists a positive integer N

where

an ≤ bn ≤ cn, for each n ≥ N, and lim
n→∞

an = lim
n→∞

cn = L.

Then lim
n→∞

bn = L.
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Theorem: If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Examples of Convergent Sequences:

1.
{

n

n+ 1

}∞
n=1

lim
n→∞

n

n+ 1 = lim
n→∞

n+ 1− 1
n+ 1 = lim

n→∞
1− 1

n+ 1 = 1

2.
{

ln(n)
n

}∞
n=1

Note that f(x) := ln(x)
x

satisfies f(n) = an for each positive integer n. So,

lim
n→∞

ln(n)
n

= lim
x→∞

ln(x)
x

L’H= lim
x→∞

1/x
1 = 0

3.
{

cos(n)
n

}∞
n=1

Since −1 ≤ cos(n) ≤ 1 for all n ∈ N, we have − 1
n
≤ cos(n)

n
≤ 1
n

and since

lim
n→∞

− 1
n

= lim
n→∞

1
n

= 0,

we have lim
n→∞

cos(n)
n

= 0, by the Squeeze Theorem.

4.
{

(−1)n
n

}

lim
n→∞

∣∣∣∣ (−1)n
n

∣∣∣∣ = lim
n→∞

1
n

= 0,

so,

lim
n→∞

(−1)n
n

= 0

Examples of Divergent Sequences:

1. {(−1)n}∞n=1

2. {(−1)nn}∞n=1

3. {sin(n)}∞n=1
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Definition: The product of the first n positive integers,

n · (n− 1) · (n− 2) · · · 5 · 4 · 3 · 2 · 1,

is denoted by n! (read n factorial.)

Convention: 0! = 1

Example 1: Find the limit of the sequence
{
n!
nn

}∞
n=1

.

Observe,

a1 = 1!
11 = 1

1 ≤
1
1

a2 = 2!
22 = 2 · 1

2 · 2 = 2
2 ·

1
2 ≤

1
2

a3 = 3!
33 = 3 · 2 · 1

3 · 3 · 3 = 3
3 ·

2
3︸ ︷︷ ︸

≤1

· 1
3 ≤

1
3

...

an = n!
nn

= n · (n− 1) · (n− 2) · · · 2 · 1
n · n · n · · ·n · n

= n

n
· n− 1

n
· n− 2

n
· · · 2

n︸ ︷︷ ︸
≤1

· 1
n
≤ 1
n

So we have 0 ≤ an ≤
1
n
, so by the Squeeze Theorem lim

n→∞
an = 0.

Example 2: For what values of r is the sequence {rn}∞n=1 convergent?

• If r > 1, lim
n→∞

rn =∞

• If r = 1, lim
n→∞

rn = 1

• If 0 < r < 1, lim
n→∞

rn = 0

• If r = 0, lim
n→∞

rn = 0

• If −1 < r < 0, lim
n→∞

rn = 0

• If r ≤ −1, {rn}∞n=1 diverges
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Definitions: Two concepts that play a key role in determining the convergence of a sequence are those of a bounded
sequences and a monotonic sequence.

(a) A sequence {an}∞n=1 is bounded from above if there exists a number M such that an ≤M for all n.

The number M is an upper bound for {an}∞n=1.

If M is an upper bound for {an}∞n=1 but no number less than M is an upper bound for {an}∞n=1, then M is the

least upper bound (supremum) of {an}n=1∞.

(b) A sequence {an}∞n=1 is bounded from below if there exists a number m such that an ≥ m for all n.

The number m is a lower bound for {an}∞n=1.

If m is a lower bound for {an}∞n=1 but no number greater than m is a lower bound for {an}∞n=1, then m is the

greatest lower bound (infimum) of {an}n=1∞.

(c) Completeness Axiom: If S is any non-empty set of real numbers that has an upper bound M , then S has a least
upper bound b. Similarly for least upper bound.

(d) If {an}∞n=1 is bounded from above and below then {an}∞n=1 is bounded .

If {an}∞n=1 is not bounded, then we say that {an}∞n=1 is an unbounded sequence.

(e) Every convergent sequence is bounded but not every bounded sequence

converges . (consider an = (−1)n ).

(f) A sequence {an}∞n=1 is non-decreasing if an ≤ an+1 for every n.

A sequence {an}∞n=1 is non-increasing if an ≥ an+1 for every n.

A sequence {an}∞n=1 is monotonic if it is either non-decreasing or non-increasing.

The Monotone Convergence Theorem: Every bounded, monotonic sequence converges.

Note: The Monotone Convergence Theorem ONLY tells us that the limit exists, NOT the value of the limit. It also tells
us that a non-decreasing sequence converges when it is bounded from above, but diverges to infinity otherwise.
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Example 3: Does the following recursive sequence converge?

a1 = 2, an+1 = 1
2(an + 6).

a1 = 2, a2 = 1
2(2 + 6) = 4, a3 = 1

2(4 + 6) = 5, 11
2 ,

23
4 , . . . .

It seems that the sequence is increasing. Lets prove this by induction. Suppose that ak−1 > ak for some k > 2. If we can
show ak+1 > ak then we are done. Indeed,

ak−1 < ak =⇒ ak−1 + 6 < ak + 6 =⇒ ak = 1
2(ak−1 + 6) < 1

2(ak + 6) = ak+1.

Thus {an}∞n=1 is an increasing sequence. If we show that the sequence is bounded we can use the Monotone Convergence
Theorem. We know that it is bounded below by 2, since we just showed it was an increasing sequence. Note too that, at
least for the ones we checked, ak < 6. So,

ak+1 = 1
2 (ak + 6) < 1

2(6 + 6) = 6.

So we have {an}∞n=1 is bounded above by 6. So, by the Monotone Convergence Theorem {an}∞n=1 converges.

To find the limit, let L := limn→∞ an. Then,

L = lim
n→∞

an+1 = lim
n→∞

1
2(an + 6) = 1

2(L+ 6) =⇒ 2L = L+ 6 =⇒ L = 6.

So lim
n→∞

an = 6.
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Sum of an Infinite Sequence: An infinite series is the sum of an infinite sequence of numbers

a1 + a2 + a3 + · · ·+ an + · · · .

The goal of this section is to understand the meaning of such an infinite sum and to develop methods to calculate it. Since
there are infinitely many terms to add in an infinite series, we cannot just keep adding to see what comes out. Instead, we
look at the result of summing the first n terms of the sequences,

Sn := a1 + a2 + a3 + · · ·+ an.

Sn is called the nth partial sum. As n gets larger, we expect the partial sums to get closer and closer to a limiting value
in the same sense as the terms of a sequence approach a limit.

Example 1: To assign meaning to an expression like

1 + 1
2 + 1

4 + 1
8 + 1

16 + · · ·

we add the terms one at a time from the beginning to look for a pattern in how these partial sums grow:

Partial Sum Value

First: S1 = 1 1 = 21 − 1
21−1

Second: S2 = 1 + 1
2

3
2 = 22 − 1

22−1

Third: S3 = 1 + 1
2 + 1

4
7
4 = 23 − 1

23−1

...
...

...

nth: Sn = 1 + 1
2 + 1

4 + · · ·+ 1
2n−1

2n − 1
2n−1

S = lim
n→∞

Sn = lim
n→∞

2n − 1
2n−1 = lim

n→∞

(
2n

2n−1 −
1

2n−1

)
= lim
n→∞

(
2− 1

2n−1

)
2.

Since the sequence of partial sums converges, the infinite series converges. That is,

∞∑
n=1

1
2n−1 = 1 + 1

2 + 1
4 + 1

8 + 1
16 + · · · = 2.
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Definitions: Given a sequence of numbers {an}∞n=1, an expression of the form

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · ·

is an infinite series . The number an is the nth term of the series. The sequence {Sn}∞n=1

defined by

Sn :=
n∑
n=1

an = a1 + a2 + a3 + · · ·+ an

is called the sequence of partial sums of the series, the number Sn being the nth partial sum .

If the sequence of partial sums converges to a limit L, we say that the series converges and that the

sum is L. In this case we write

∞∑
n=1

an = a1 + a2 + a3 + · · ·+ an + · · · = L.

If the sequence of partial sums of the series does not converge, we say that the series diverges .

Notation: Sometimes it is nicer, or even more beneficial, to consider sums starting at n = 0 instead. For example, we can
rewrite the series in Example 1 as

∞∑
n=1

1
2n−1 =

∞∑
n=0

1
2n .

At times it may also be nicer to start indexing at some number other than n = 0 or n = 1. This idea is called re-indexing
the series (or sequence). So don’t be alarmed if you come across series that do not start at n = 1.

Geometric Series: A geometric series is of the form

a+ ar + ar2 + ar3 + · · ·+ arn + · · · =
∞∑
n=1

arn−1=
∞∑
n=0

arn

in which a and r are fixed real numbers and a 6= 0. The ratio r can be positive (as in Example 1) or
negative, as in

1− 1
3 + 1

9 −
1
27 + · · ·+

(
−1

3

)n−1
+ · · · =

∞∑
n=1

(
−1

3

)n−1
.

If r = 1, the nth partial sum of the geometric series is

Sn = aa(1) + a(1)2 + a(1)3 + · · ·+ a(1)n−1 = na

and the series diverges since lim
n→∞

Sn = lim
n→∞

na = ±∞ (depending on the sign of a).
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If r = −1, the series diverges since the nth partial sums alternate between a and 0.

S1 = a, S2 = a+ a(−1) = 0, a+ a(−1) = a(−1)2 = a, . . .

If |r| 6= 1, then we use the following “trick”:

Sn = a+ ar + ar2 + · · ·+ srn−1

=⇒ rSn = ar + ar2 + ar3 + · · ·+ arn

=⇒Sn − rSn = a− arn

=⇒ Sn = a− arn

1− r = a(1− rn)
1− r .

If |r| < 1 then rn −→ 0 as n −→∞, so Sn −→
a

1− r . If |r| > 1 then |rn| −→ ∞ as n −→∞ and the series diverges.

Convergence of Geometric Series: If |r| < 1, the geometric series a+ ar + ar2 + · · · arn−1 + · · · converges:

∞∑
n=1

arn−1 = a

1− r , |r| < 1.

If |r| ≥ 1, the series diverges.

Example 2: Consider the series
∞∑
n=0

(−1)n5
4n .

∞∑
n=0

(−1)n5
4n =

∞∑
n=1

(−1)n−15
4n−1 =

∞∑
n=1

5
(
−1

4

)n−1
.

So this series is a geometric series with a = 5 and r = −1
4 . Since |r| < 1 the series converges and so,

∞∑
n=1

5
(
−1

4

)n−1
= 5

1−
(
− 1

4
) = 4

Example 3: Express the repeating decimal 5.232323 . . . as the ratio of two integers.

5.232323 . . . = 5 + 23
100 + 23

1002 + 23
1003 + · · ·

= 5 + 23
100

(
1 + 1

100 + 1
1002 + · · ·

)
= 5 + 23

100

∞∑
n=1

(
1

100

)n−1
a = 1, r = 1

100

= 5 + 23
100

(
1

1− 1
100

)
= 5 + 23

100 ·
100
99

= 518
99
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Example 4: Find the sum of the telescoping series

∞∑
n=1

1
n(n+ 1) .

If we take the partial sum decomposition, ∑
n=1

1
n(n+ 1) =

∞∑
n=1

(
1
n
− 1
n+ 1

)
,

then its easy to see that the partial sums are,

Sn =
(

1−
�
��1
2

)
+
(
�
��1
2 − �

��1
3

)
+
(
�
��1
3 − �

��1
4

)
+ · · ·+

(
�
��1
n
− 1
n+ 1

)
= 1− 1

n+ 1
n→∞−→ 1.

Since the sequence of partial sums converges, the series converges and so
∞∑
n=1

1
n(n+ 1) = 1

Theorem: If the series
∞∑
n=1

an converges, then lim
n→∞

an = 0.

Suppose {Sn}∞n=1 converges to L. Then note that {Sn+1}∞n=1 also converges to L. So then,

0 = L− L = lim
n→∞

Sn+1 − lim
n→∞

Sn = lim
n→∞

(Sn+1 − Sn) = lim
n→∞

an+1 = lim
n→∞

an.

SUPER IMPORTANT NOTE: This theorem does NOT say that if lim
n→∞

an = 0 then
∑∞
n=1 an converges.

The nth Term Test for Divergence: The series
∞∑
n=1

an diverges if lim
n→∞

an fails to exist or is different from zero.

SUPER IMPORTANT NOTE: This theorem does NOT say that if lim
n→∞

an = 0 then
∑∞
n=1 an converges.

1.
∞∑
n=1

n2 diverges since lim
n→∞

n2 =∞.

2.
∞∑
n=1

n+ 1
n

diverges since lim
n→∞

n+ 1
n

= 1 6= 0.

3.
∞∑
n=1

(−1)n+1 diverges since lim
n→∞

(−1)n+1 does not exist.

Combining Series: If
∑

an = A and bn = B, then

1) Sum Rule :
∞∑
n=1

(an + bn) = A+B, 2) Constant Multiple Rule :
∞∑
n=1

can= cA, for any c ∈ R.

Some True Facts:

1. Every non-zero constant multiple of a divergent series diverges.

2. If
∑

an converges and
∑

bn diverges, then
∑

(an ± bn) diverges.

Caution!
∑

(an + bn) can converge when both
∑

an and
∑

bn diverge!.


∑∞
n=1 1 diverges∑∞
n=1(−1) diverges∑∞
n=1 (1 + (−1)) = 0

Adding/Deleting Terms: Adding/deleting a finite number of terms will not alter the convergence or divergence of a
series.
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Tests for Convergence: The most basic question we can ask about a series is whether or not it converges. In the next
few sections we will build the tools necessary to answer that question. If we establish that a series does converge, we
generally do not have a formula for its sum (unlike the case for Geometric Series). So, for a convergent series we need to
investigate the error involved when using a partial sum to approximate its total sum.

Non-decreasing Partial Sums: Suppose
∞∑
n=1

an is an infinite series with an ≥ 0 for all n. Then each partial sum is

greater than or equal to its predecessor since Sn+1 = Sn + an+1, so

S1 ≤ S2 ≤ S3 ≤ · · · ≤ Sn ≤ Sn+1 ≤ . . .

Since the partial sums form a non-decreasing sequence, the Monotone Convergence Theorem give us the following result:

Corollary Of MCT: A series
∞∑
n=1

an of non-negative terms converges if and only if its partial sums are bounded from above.

Example 1: Consider the harmonic series

∞∑
n=1

1
n
.

nth term test:

lim
n→∞

1
n

= 0 =⇒ nth term test is inconclusive.

Note however,

∞∑
n=1

1
n

= 1 + 1
2︸ ︷︷ ︸

3
2

+ 1
3 + 1

4︸ ︷︷ ︸
> 2

4 = 1
2

+ 1
5 + 1

6 + 1
7 + 1

8︸ ︷︷ ︸
> 4

8 = 1
2

+ 1
9 + 1

10 + 1
11 + 1

12 + 1
13 + 1

14 + 1
15 + 1

16︸ ︷︷ ︸
> 8

16 = 1
2

+ · · ·

In general, the sum of 2n terms ending with 1
2n+1 is greater than 1

2 . If n = 2k, the sum Sn is greater than k

2 , so Sn is not
bounded from above. So the Harmonic Series diverges. Another way of seeing this is

S2k = 1 + 1
2 + 1

3 + · · ·+ 1
2k >

k

2
k→∞−→ ∞,

so then Sn −→∞ and the series diverges.

We now introduce the Integral Test with a series that is related to the harmonic series, but whose nth term is 1/n2 instead
of 1/n.
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Example 2: Does the following series converge?

∞∑
n=1

1
n2 .

We will compare the series to
ˆ ∞

1

1
x2 dx.

Sn = 1
12 + 1

22 + · · ·+ 1
n2

= f(1) + f(2) + · · ·+ f(n)

< f(1) +
ˆ n

1

1
x2 dx

< f(1) +
ˆ ∞

1

1
x2 dx

= 1 + 1

= 2 1 2 3 4 5

Since the partial sums are bounded above by 2, the sum converges.

The Integral Test: Let {an}∞n=1 be a sequence of positive terms. Suppose that there is a positive integer N such that for

all n ≥ N , an = f(n), where f(x) is a positive , continuous , decreasing

function of x. Then the series
∞∑

n= N

an and the integral
ˆ ∞

N

f(x) dx both converge or diverge.

Example 3: Show that the p-series

∞∑
n=1

1
np

= 1
1p + 1

2p + 1
3p + · · ·+ 1

np
+ · · · ,

(where p is a real constant) converges if p > 1 and diverges if p ≤ 1.

If p > 1 then f(x) = 1
xp

is a positive, continuous, decreasing function of x. Since
ˆ ∞

1
f(x) dx = 1

p− 1 , the series converges

by the Integral Test. Note that the sum of this series is not generally 1
p− 1 . If p ≤ 0, the sum diverges by the nth term

test. If 0 < p < 1 then 1− p > 0 and

ˆ ∞
1

1
xp

dx = lim
b→∞

ˆ b

1

1
xp

dx = 1
p− 1

(
lim
b→∞

b1−p − 1
)

=∞.

Example 4: Determine the convergence of divergence of the series

∞∑
n=1

ne−n
2
.

f(x) = xe−x
2 is positive, continuous, decreasing and f(n) = an for all n. Further,

ˆ ∞
1

xe−x
2
dx = lim

b→∞

ˆ b

1
xe−x

2
dx = 1

2 lim
b→∞

[
−e−b

2
− (−e−1)

]
= 1

2e .

Since the integral converges, the series also converges.
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Error Estimation: For some convergent series, such as a geometric series or the telescoping series, we can actually
find the total sum of the series. For most convergent series, however, we cannot easily find the total sum. Neverthe-
less, we can estimate the sum by adding the first n terms to get Sn, but we need to know how far off Sn is from the total sum S.

Suppose a series
∑

an is shown to be convergent by the integral test and we want to estimate the size of the remainder
Rn measuring the difference between the total sum S and its nth partial sum Sn.

Rn = S − Sn = an+1 + an+1 + an+1 + · · ·

Lower Bound: Shift the integral test function left 1 unit.

1 2 3 4 5

Rn ≥
ˆ ∞
n+1

f(x) dx

Upper Bound: The integral test function.

1 2 3 4 5

Rn ≤
ˆ ∞
n

f(x) dx

Bound for the Remainder in the Integral Test: Suppose {an}∞n=1 is a sequence of positive terms with ak = f(k),

where f(x) is a continuous positive decreasing function of x for all x ≥ n and that
∞∑
k=1

ak converges to S. Then the

remainder Rn = R− Sn satisfies the inequalities
ˆ ∞
n+1

f(x) dx ≤ Rn ≤
ˆ ∞
n

f(x) dx.

Example 5: Estimate the sum, S, of the series
∞∑
n=1

1
n2 with n = 10.

ˆ ∞
n

1
x2 dx = lim

b→∞

ˆ b

n

1
x2 dx = lim

b→∞

[
− 1
x

]b
n

= lim
b→∞

[
−1
b

+ 1
n

]
= 1
n

=⇒ S10 + 1
11 ≤ S ≤ S10 + 1

10

S10 = 1 + 1
4 + 1

9 + ·+ 1
100 ≈ 1.54977 =⇒ 1.64068 ≤ S ≤ 1.64977

It seems reasonable that taking the midpoint of this interval would give a good estimate, so

S ≈ 1.6452.

It turns out that using fancy advanced calculus (Fourier Analysis) we actually know that

S =
∞∑
n=1

1
n2 = π2

6 ≈ 1.64493.
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Worksheet

Goal: In Section 8.8 we saw that a given improper integral converges if its integrand is less than the integrand of another inte-
gral known to converge. Similarly, a given improper integral diverges if its integrand is greater than the integrand of another
integral known to diverge. In Problems 1−8, you’ll apply a similar strategy to determine if certain series converge or diverge.

Problem 1: For each of the following situations, determine if
∞∑
n=1

an converges, diverges, or if one cannot tell without

more information.

(a) If 0 ≤ an ≤
1
n

for all n, we can conclude nothing .

(b) If 1
n
≤ an for all n, we can conclude

∞∑
n=1

an diverges .

(c) If 0 ≤ an ≤
1
n2 for all n, we can conclude

∞∑
n=1

an converges .

(d) If 1
n2 ≤ an for all n, we can conclude nothing .

(e) If 1
n2 ≤ an ≤

1
n

for all n, we can conclude nothing .

Problem 2: For each of the cases in Problem 1 where you needed more information to determine the convergence of the
series, give (i) an example of a series that converges and (ii) an example of a series that diverges, both of which satisfy the
given condition.

(a) (i) 1
n2 ≤

1
n

and
∞∑
n=1

1
n2 converges. (ii) 1

n+ 1 ≤
1
n

and
∞∑
n=1

1
n+ 1 diverges.

(d) (i) 1
n2 ≤

1
n2 − 1 and

∞∑
n=1

1
n2 − 1 converges. (ii) 1

n2 ≤
1
n

and
∞∑
n=1

1
n

diverges.

(e) (i) 1
n2 ≤

1
n2 − 1 ≤

1
n

and
∞∑
n=1

1
n2 − 1 converges. (ii) 1

n2 ≤
1

n+ 1 ≤
1
n

and
∞∑
n=1

1
n+ 1 diverges.
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Direct Comparison Test for Series: If 0 ≤ an ≤ bn for all n ≥ N , where N ∈ N, then,

1. If
∞∑
n=1

bn converges , then so does
∞∑
n=1

an.

2. If
∞∑
n=1

an diverges , then so does
∞∑
n=1

bn.

Now we’ll practice using the Direct Comparison Test:

Problem 3: Let an = 1
2n + n

and let bn =
(

1
2

)n
.

(a) Does
∞∑
n=1

bn converge or diverge? Why?

Converges - its a Geometric Series with r = 1
2 .

(b) How do the sizes of the terms an and bn compare?

an = 1
2n + n

≤ 1
2n =

(
1
2

)n
= bn.

(c) What can you conclude about
∞∑
n=1

1
2n + n

?

It converges!

Problem 4: Let an = 1
n2 + n+ 1 .

(a) By considering the rate of growth of the denominator of an, what choice would you make for bn?

bn = 1
n2

(b) Does
∞∑
n=1

bn converge or diverge?

Converges - its a p− series with p = 2

(c) How do the sizes of the terms an and bn compare?

an = 1
n2 + n+ 1 ≤

1
n2 = bn

(d) What can you conclude about
∞∑
n=1

an?

It converges!
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Problem 5: Use the Direct Comparison Test to determine if
∞∑
n=1

√
n4 − 1
n5 + 3 converges or diverges. (Hint: What are the

dominant terms of an?)

The dominant terms of an are
√
n4

n5 = n2

n5 = 1
n3 .

• Choose bn = 1
n3 .

• an =
√
n4 − 1
n5 + 3 <

√
n4

n5 + 3 = n2

n5 + 3 <
n2

n5 = 1
n3 = bn.

•
∞∑
n=1

bn is a p-series with p = 3 > 1, so it converges.

• Since an < bn,
∞∑
n=1

an also converges.

Problem 6: Use the Direct Comparison Test to determine if
∞∑
n=1

cos2(n)√
n3 + n

converges or diverges.

• cos2(n) ≤ 1 =⇒ cos2(n)√
n3 + n

≤ 1√
n3 + n

<
1√
n3

= 1
n3/2 =⇒ choose bn = 1

n3/2 .

•
∞∑
n=1

bn is a p-series with p = 3
2 > 1, so it converges.

• Since an < bn,
∞∑
n=1

an also converges.

Problem 7: Unfortunately, the Direct Comparison Test doesn’t always work like we wish it would. Let an = 1
n2 and

bn = 1
n2 − 1 for n ≥ 2.

(a) By comparing the relative sizes of the terms of the two sequences, do we have enough information to determine if
∞∑
n=2

bn converges or diverges?

1
n2 ≤

1
n2 − 1 =⇒ So Direct Comparison is inconclusive.

(b) Show that lim
n→∞

bn
an

= 1.

lim
n→∞

1
n2−1

1
n2

= lim
n→∞

n2

n2 − 1 = lim
n→∞

n2 − 1 + 1
n2 − 1 = lim

n→∞

(
1 + 1

n2 − 1

)
= 1
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(c) Using part (b), explain carefully why, for all n large enough (more precisely, for all n larger than some integer N),

bn ≤ 2an. Now can you determine if
∞∑
n=N

bn converges or diverges?

1
n2 − 1 ≤

2
n2 ⇐⇒ n2 ≤ 2(n2 − 1)⇐⇒ n2 ≤ 2n2 − 2⇐⇒ 2 ≤ n2 ⇐⇒ 1 < n.

Yes!

∞∑
n=2

1
n2 − 1 ≤

∞∑
n=2

2
n2 = 2

∞∑
n=2

1
n2 converges since it is a p-series =⇒

∞∑
n=1

bn converges!

The Limit Comparison Test: Suppose an > 0 and bn > 0 for all n. If lim
n→∞

an
bn

= c, where c is finite and c > 0, then

the two series
∑

an and
∑

bn either both converge or both diverge .

Problem 8: Using either the Limit or Direct Comparison Test, determine if the series
∞∑
n=2

n3 − 2n
n4 + 3 converges or diverges.

n3 − 2n
n4 + 3 >

n3

n4 + 3 which behaves like 1
n
.

Let bn = 1
n

and use the Limit Comparison Test:

lim
n→∞

n3−2n
n4+3

1
n

= lim
n→∞

n3 − 2n
n4 + 3 · n = lim

n→∞

n4 − 2n2

n4 + 3 = 1 > 0

Since
∞∑
n=2

1
n

diverges,
∞∑
n=2

n3 − 2n
n4 + 3 also diverges.

Problem 9: Determine whether the series
∞∑
n=1

10n+ 1
n(n+ 1)(n+ 2) converges or diverges.

0 < 10n+ 1
n(n+ 1)(n+ 2) ≈

10n
n3 = 10 1

n2 so let bn = 1
n2 .

lim
n→∞

an
bn

=
10n+1

n3+2n2+2n
1
n2

= lim
n→∞

10n3 + n2

n3 + 2n2 + 2n = lim
n→∞

10 + 1 1
n

1 + 2
n + 2

n2

= 10 > 0.

So
∞∑
n=1

an behaves the same way
∞∑
n=1

bn does. Thus by the limit comparison test,
∞∑
n=1

an converges.
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Section 10.5: Absolute Convergence & the
Ratio and Root Tests

When the terms of a series are positive and negative, the series may or may not converge.

Example 1: Consider the series

5− 5
4 + 5

16 −
5
64 + · · · =

∞∑
n=0

5
(
−1

4

)n
.

This is a geometric series with |r| =
∣∣∣∣−1

4

∣∣∣∣ = 1
4 < 1, so it converges.

Example 2: Now consider

1− 5
4 + 25

16 −
125
64 + · · · =

∞∑
n=0

(
−5

4

)n
.

This is a geometric series with |r =
∣∣∣∣−5

4

∣∣∣∣ = 5
4 > 1, so it diverges.

The Absolute Convergence Test:

If
∞∑
n=0
|an| converges, then

∞∑
n=0

an converges.

Definitions: A series
∑

an converges absolutely (or is absolutely convergent) if the corresponding series of absolute
values

∑
|an|, converges. Thus, if a series is absolutely convergent, it must also be convergent. We call a series condi-

tionally convergent if
∑

an converges but
∑
|an| diverges.

Example 3: Consider
∞∑
n=1

(−1)n+1 1
n2 .

an = (−1)n+1 1
n2 =⇒ |an| =

1
n2 :

∞∑
n=1
|an| =

∞∑
n=1

1
n2 converges since it is a p-series with p = 2 > 1,

so
∞∑
n=1

an converges absolutely
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The Ratio Test: Let
∑

an be any series and suppose

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = L.

Then we have the following:

• If L < 1, then
∑

an converges absolutely.

• If L > 1 (including L =∞), then
∑

an diverges.

• If L = 1, we can make no conclusion about the series using this test.

Example 4: Use the Ratio Test to decide whether the series

∞∑
n=0

2n + 5
3n

converges absolutely, is conditionally convergent or diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣ 2n+1+5
3n+1

2n+5
3n

∣∣∣∣∣ = lim
n→∞

∣∣∣∣2n+1 + 5
3n+1 · 3n

2n + 5

∣∣∣∣
= lim
n→∞

∣∣∣∣ 2n+1 + 5
3 (2n + 5)

∣∣∣∣
= 1

3 lim
n→∞

2n+1 + 5
2n + 5

= 1
3 lim
n→∞

2 + 5
2n

1 + 5
2n

= 2
3 < 1

So,
∞∑
n=0

2n + 5
3n converges absolutely by the Ratio Test.

Example 5: Use the Ratio Test to decide whether the series

∞∑
n=1

(2n)!
(n!)2

converges absolutely, is conditionally convergent or diverges.

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2(n+ 1))!
((n+ 1)!)2 ·

(n!)2

(2n)!

∣∣∣∣ = lim
n→∞

∣∣∣∣ (2n+ 2)!
(n+ 1)! · (n+ 1)! ·

n! · n!
(2n)!

∣∣∣∣
= lim
n→∞

∣∣∣∣ (2n+ 2) · (2n+ 1) ·���(2n)!
(n+ 1) ·��n! · (n+ 1) ·��n! ·

��n! ·��n!
���(2n)!

∣∣∣∣
= lim
n→∞

(2n+ 2)(2n+ 1)
(n+ 1)(n+ 1)

= lim
n→∞

(
2 + 2

n

) (
2 + 1

n

)(
1 + 1

n

) (
1 + 1

n

)
= 4 > 1

So,
∞∑
n=1

(2n)!
(n!)2 diverges by the Ratio Test. The ratio test is super useful for factorials
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The Root Test: Let
∑

an be any series and suppose

lim
n→∞

n
√
|an| = L.

Then we have the following:

• If L < 1, then
∑

an converges absolutely.

• If L > 1 (including L =∞), then
∑

an diverges.

• If L = 1, we can make no conclusion about the series using this test.

Example 6: Use the Root Test to determine whether the series

∞∑
n=1

n2

2n

converges absolutely, is conditionally convergent, or diverges.

lim
n→∞

n
√
an = lim

n→∞
n

√∣∣∣∣n2

2n

∣∣∣∣ = lim
n→∞

n
√
n2

2

= lim
n→∞

( n
√
n)2

2

= 12

2
= 1

2 < 1

So,
∞∑
n=1

n2

2n converges absolutely by the Root Test. The ratio test is super useful for an

lim
n→∞

n
√
n = lim

n→∞
eln( n

√
n) = elimn→∞

ln(n)
n

L’H= elimn→∞
1/n

1 = e0 = 1
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Section 10.6: The Alternating Series Test

Definition: A series whose terms alternate between positive and negative is called an alternating series. The nth term
of an alternating series is of the form

an = (−1)n+1bn or an = (−1)nbn

where bn = |an| is a positive number.

The Alternating Series Test: The series

∞∑
n=1

(−1)n+1bn = b1 − b2 + b3 − b4 + · · · , bn > 0,

converges if the following two conditions are satisfied:

• bn ≥ bn+1 for all n ≥ N , for some integer N ,

• lim
n→∞

bn = 0.

Example 1: The alternating harmonic series

∞∑
n=1

(−1)n+1 1
n

= 1− 1
2 + 1

3 −
1
4 + · · ·

clearly satisfies the requirements with N = 1 and therefore converges.

Instead of verifying bn ≥ bn+1, we can follow the steps we did in the integral test to verify the sequence is decreasing.
Define a differentiable function f(x) satisfying f(n) = bn. If f ′(x) ≤ 0 for all x greater than or equal to some positive
integer N , then f(x) is non-increasing for x ≥ N . It follows that f(n) ≥ f(n+ 1), or bn ≥ bn+1 for all N .

Example 2: Consider the sequence where bn == 10n
n2 + 16 . Define f(x) = 10x

x2 + 16 . Then f
′(x) = 10(16− x2)

(x2 + 16) ≥ 0 when
x ≥ 4. It follows that bn ≥ bn+1 for n ≥ 4.

The Alternating Series Test Estimation Theorem: If the alternating series
∞∑
n=1

(−1)n+1bn satisfies the conditions of

the AST, then for n ≥ N ,

Sn = b1 − b2 + b3 − b4 + · · ·+ (−1)n+1bn

approximates the sum L of the series with an error whose absolute value is less than bn+1, the absolute value of the first
unused term.
Furthermore, the sum L lies between any two successive partial sums Sn and Sn+1, and the remainder, L− Sn, has the
same sign as the first unused term.
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Example 3: Let’s apply the Estimation Theorem on a series whose sum we know:

∞∑
n=0

(−1)n 1
2n = 1− 1

2 + 1
4 −

1
8 + 1

16 −
1
32 + 1

64 −
1

128 + 1
256 − · · · =

1
1−

(
− 1

2
) = 2

3 .

n Sum Sn L− Sn
0 1 1 − 1

3

1 1− 1
2

1
2

1
6

2 1− 1
2 + 1

4
3
4 − 1

12

3 1− 1
2 + 1

4 −
1
8

5
8

1
24

4 1− 1
2 + 1

4 −
1
8 + 1

16
11
16 − 1

48

5 1− 1
2 + 1

4 −
1
8 + 1

16 −
1
32

21
32

1
96

6 1− 1
2 + 1

4 −
1
8 + 1

16 −
1
32 + 1

64
43
64 − 1

192

7 1− 1
2 + 1

4 −
1
8 + 1

16 −
1
32 + 1

64 −
1

128
85
128

1
384

8 1− 1
2 + 1

4 −
1
8 + 1

16 −
1
32 + 1

64 −
1

128 + 1
256

171
256 − 1

768

Example 4 - Conditional Convergence: We have seen that in absolute value, the Alternating Harmonic Series diverges.
The presence of infinitely many negative terms is essential to its convergence. We say the Alternating Harmonic Series if
conditionally convergent. We can extend this idea to the alternating p-series.
If p is a positive constant, the sequence 1

np
is a decreasing sequence with limit zero. Therefore, the alternating p-series

∞∑
n=1

(−1)n+1

np
= 1− 1

2p + 1
3p −

1
4p + · · · , p > 0

converges.

• If p > 1, the series converges absolutely.

• If 0 < p ≤ 1, the series converges conditionally.

The Rearrangement Theorem for Absolutely Convergent Series: If
∑

an converges absolutely and b1, b2, . . . , bn . . .
is any arrangement of the sequence {an}, then

∑
bn converges absolutely and

∑
bn =

∑
an.

Example 5: We know
∞∑
n=1

(−1)n+1

n
converges to some number L.

By the Estimation Theorem, we know L 6= 0 (our partial sums never “hop” over 0). So,

2L = 2
(

1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

)
= 2− 1 + 2

3 −
1
2 + 2

5 −
1
3 + 2

7 −
1
4 + · · ·

= (2− 1)− 1
2 +

(
2
3 −

1
3

)
− 1

4 +
(

2
5 −

1
5

)
− 1

6 + · · · (group all the terms with odd denominators together,
leaving the even denominator terms alone)

= 1− 1
2 + 1

3 −
1
4 + 1

5 −
1
6 + 1

7 −
1
8 + · · ·

= L

So 2L = L . . . so L = 0? But L 6= 0 . . . oops. Thus we cannot rearrange the sum in a conditionally convergent sequence.
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Section 10.7: Power Series

Definition: A power series about x = 0 is a series of the form

∞∑
n=0

cnx
n = c0 + c1x+ c2x

2 + · · ·+ cnx
n + · · · .

A power series about x = a is a series of the form

∞∑
n=0

cn (x− a)n = c0 + c1 (x− a) + c2 (x− a)2 + · · ·+ cn (x− a)n + · · ·

in which the centre a and the coefficients c0, c1, c2, . . . , cn, . . . are constants.

Example 1 - Geometric Power Series: Taking all the coefficients to be 1 in the power series centred at x = 0 gives
the geometric power series:

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · ·+ xn + · · · .

This is the geometric series with first term 1 and ratio x.

Sn = 1 + x+ x2 + x3 + x4 + · · ·+ xn

=⇒ (1− x)Sn = (1− x)
(
1 + x+ x2 + x3 + x4 + · · ·+ xn

)
=
(
1 + x+ x2 + x3 + x4 + · · ·+ xn

)
−
(
x+ x2 + x3 + x4 + x5 · · ·+ xn+1)

= 1− xn+1

=⇒ Sn = 1− xn
1− x

So,

∞∑
n=0

xn = lim
n→∞

Sn = lim
n→∞

1− xn
1− x which converges if and only if |x| < 1

Instead of focussing on finding a formula for the sum of a power series, we are now going to think of the partial sums of the
series as polynomials Pn(x) that approximate the function on the left. For values of x near zero, we need only take a few
terms of the series to get a good approximation. As we move toward x = 1 or x = −1, we need more terms.

One of the most important questions we can ask about a power series is “for what values of x will the series converge?”
Since power series are functions, what we are really asking here is “what is the domain of the power series?”
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Example 2: Consider the power series

1− 1
2(x− 2) + 1

4(x− 2)2 − · · ·+
(
−1

2

)n
(x− 2)n + · · ·

Centre: a = 2, c0 = 1, c1 = −1
2 , c2 = 1

4 , . . . , cn =
(
−1

2

)n
,

Ratio: r = cn+1(x− 2)n+1

cn(x− 2)n = c1(x− 2)
c0

=
− 1

2 (x− 2)
1 = −x− 2

2

The series converges when |r| < 1, that is,∣∣∣∣−x− 2
2

∣∣∣∣ < 1 =⇒
∣∣∣∣x− 2

2

∣∣∣∣ < 1 =⇒ |x− 2| < 2 =⇒ −2 < x− 2 < 2 =⇒ 0 < x < 4.

Example 3: For what values of x do the following series converge?

(a)
∞∑
n=1

(−1)n−1x
n

n
.

We will use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣(−1)n x

n+1

n+ 1 ·
n

(−1)n−1xn

∣∣∣∣ =
∣∣∣∣ nx

x+ 1

∣∣∣∣ = |x| n

n+ 1
n→∞−→ |x|

The series converges absolutely when |x| < 1 and diverges when |x| > 1. It remains to see what happens at the
endpoints; x = −1 and x = 1.

x = −1:
∞∑
n=1

(−1)n−1 (−1)n
n

=
∞∑
n=1

(−1)2n−1

n
=
∞∑
n=1

−1
n

= −
∞∑
n=1

1
n

=⇒ the series diverges at x = −1.

x = 1:
∞∑
n=1

(−1)n−1 1n
n

=
∞∑
n=1

(−1)n−1

n
= the Alternating Harmonic Series =⇒ the series converges at x = 1.

So, the series
∞∑
n=1

(−1)n−1x
n

n
converges for −1 < x ≤ 1 and diverges elsewhere.

(b)
∞∑
n=0

xn

n! .

We will use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =
∣∣∣∣ xn+1

(n+ 1)! ·
n!
xn

∣∣∣∣ =
∣∣∣∣ xn+1

(n+ 1) · n! ·
n!
xn

∣∣∣∣ =
∣∣∣∣ x

n+ 1

∣∣∣∣ = |x|
n+ 1 =n→∞−→ 0

Since the value of the limit is 0, no matter what real number we choose for x and 0 < 1, the series converges absolutely
for all values of x. (x ∈ R, −∞ < x <∞, (−∞,∞)).

Fact: There is always at least one point for which a power series converges: the point x = a at which the series is centred.
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The Convergence Theorem for Power Series: If the power series
∞∑
n=0

anx
n converges at x = c 6= 0, then it converges

absolutely for all x with |x| < |c|. If the series diverges at x = d, then it diverges for all x with |x| > |d|.

The Convergence Theorem and the previous examples lead to the conclusion that a power series
∑

cn(x− a)n behaves in
one of three possible ways;

• If might converge on some interval of radius R. an interval has radius R if its length is 2R

• It might converge everywhere.

• It might converge only at x = a.

The Radius of Convergence of a Power Series: The convergence of the series
∑

cn(x− a)n is described by one of
the following three cases:

1. There is a positive number R such that the series diverges for x with |x− a| > R but converges absolutely for x with
|x− a| < R. The series may or may not converge at either of the endpoints x = a−R and x = a+R.

2. The series converges absolutely for every x (R =∞)

3. The series converges only at x = a and diverges elsewhere (R = 0)

R is called the radius of convergence of the power series, and the interval of radius R centred at x = 1 is called the
interval of convergence. The interval of convergence may be open, closed or half open, depending on the series.

How to test a Power Series for Convergence:

1. Use the Ratio (or Root) Test to find the interval where the series converges absolutely. Ordinarily, this is an open
interval

|x− a| < R or a−R < x < a+R.

2. If the interval of absolute convergence is finite, test fo convergence or divergence at each endpoint. Use a Comparison
Test, the Integral Test, or the Alternating Series Test.

3. If the interval of absolute convergence is a− R < x < a+ R, the series diverges for |x− a| > R (it does not even
converge conditionally) because the nth term does not approach zero for those values of x.
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Example 4: Find the interval and radius of convergence for

∞∑
n=1

xn

n
√
n3n =

∞∑
n=1

xn

n3/23n .

Ratio Test:

lim
n→∞

∣∣∣∣ xn+1

(n+ 1)3/23n+1 ·
n3/23n
xn

∣∣∣∣ = lim
n→∞

∣∣∣∣ xn3/2

(n+ 1)3/23

∣∣∣∣ = |x|3 lim
n→∞

(
n

n+ 1

)3/2
= |x|3 .

So the series converges absolutely when |x|3 < 1 =⇒ |x| < 3 =⇒ −3 < x < 3.

Check the endpoints:

x = −3:
∞∑
n=1

(−3)n
n3/23n =

∞∑
n=1

(−1)n
n3/2 which is an alternating p-series with p = 3

2 , so it converges.

x = 3:
∞∑
n=1

3n
n3/23n =

∞∑
n=1

1
n3/2 which is a p-series with p = 3

2 , so it converges.

Thus the interval of convergence is [−3, 3] and the radius of convergence is R = 3.

Operations on Power Series: On the intersection of their intervals of convergence, two power series can be added and
subtracted term by term just like series of constants. They can be multiplied just as we multiply polynomials, but we often
limit the computation of the product to the first few terms, which are the most important. The following result gives a
formula for the coefficients in the product.

The Series Multiplication Theorem for Power Series: If A(x) =
∞∑
n=0

anx
n and Bn(x) =

∞∑
n=0

bnx
n converge absolutely

for |x| < R, and

cn = a0bn + a1bn−1 + a2bn−2 + · · ·+ an−1b1 + anb0 =
n∑
k=0

akbn−k,

then
∞∑
n=0

cnx
n converges absolutely to A(x)B(x) for |x| < R:( ∞∑

n=0
anx

n

)
·

( ∞∑
n=0

bnx
n

)
=
∞∑
n=0

cnx
n.

We can also substitute a function f(x) for x in a convergent power series:

Theorem: If
∞∑
n=0

anx
n converges absolutely for |x| < R, then

∞∑
n=0

an (f(x))n converges absolutely for any continuous

function f(x) with |f(x)| < R. For example:

Since 1
1− x =

∞∑
n=0

xn converges absolutely for |x| < 1, it follows that

1
1− 4x2 =

∞∑
n=0

(4x2)n =
∞∑
n=0

4nx2n

converges absolutely for |4x2| < 1 or |x| < 1
2 .
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Term-by-Term Differentiation Theorem: If
∑

cn(x− a)n has radius of convergence R > 0, it defines a function

f(x) =
∞∑
n=0

cn (x− a)n

on the interval a−R < x < a+R. This function f(x) has derivatives of all orders inside the interval, and we obtain the
derivatives by differentiating the original series term by term:

f ′(x) =
∞∑
n=1

ncn (x− a)n−1
,

f ′′(x) =
∞∑
n=2

n(n− 1)cn(x− a)n−2,

and so on. Each of these series converge at every point of the interval a−R < x < a+R.
Note: When we differentiate we may have to start our index at one more than it was before. This is because we lose the
constant term (if it exists) when we differentiate.

Be Careful!! Term-by-Term differentiation might not work for other kinds of series. For example, the trigonometric series

∞∑
n=0

sin(n!x)
n2

converges for all x. But if we differentiate term by term we get the series

∞∑
n=0

n! cos(n!x)
n2

which diverges for all x. This is not a power series since it is not a sum of positive integer powers of x.

Example 5: Find a series for f ′(x) and f ′′(x) if

f(x) = 1
1− x = 1 + x+ x2 + x3 + x4 + · · ·+ xn + · · · =

∞∑
n=0

xn, −1 < x < 1.

f ′(x) = 1
(1− x)2 = 0 + 1 + 2x+ 3x2 + 4x3 + · · ·+ nxn−1 + · · · =

∞∑
n=1

nxn−1, −1 < x < 1.

f ′′(x) = 2
(1− x)3 = 0 + 0 + 2 + 6x+ 12x2 + · · ·+ n(n− 1)xn−2 + · · · =

∞∑
n=2

n(n− 1)xn−2, −1 < x < 1.
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Term-by-Term Integration Theorem: Suppose that

f(x) =
∞∑
n=0

cn(x− 1)n

converges for a−R < x < a+R for R > 0. Then,

∞∑
n=0

cn
(x− a)n+1

n+ 1

converges for a−R < x < a+R and

ˆ
f(x) dx = C +

∞∑
n=0

cn
(x− a)n+1

n+ 1

for a−R < x < a+R.

Example 6: Given 1
1 + t

= 1− t+ t2 − t3 + · · · converges on −1 < t < 1, find a series representation for f(x) = ln(1 + x).

ln(1 + x) =
ˆ x

0

1
1 + t

dt = t− t2

2 + t3

3 −
t4

4 + · · ·
∣∣∣∣∣
x

0

‘ = x− x2

2 + x3

3 −
x4

4 + · · ·

=
∞∑
n=1

(−1)n+1xn

n
, −1 < x < 1.

Example 7: Identify the function f(x) such that

f(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1 = x− x3

3 + x5

5 −
x7

7 + · · · , −1 < x < 1.

Differentiate

f ′(x) = 1− x2 + x4 − x6 + · · · =
∞∑
n=0

(−1)nx2n =
∞∑
n=0

(−x2)n, −1 < x < 1.

This is a geometric series with first term 1 and ratio −x2, so

f ′(x) = 1
1− (−x2) = 1

1 + x2 .

Now we can integrate to find f(x):

f(x) =
ˆ
f ′(t) dt = arctan(x) + C.

Since f(0) = 0, we have 0 = arctan(0) + C = C, so then

f(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1 = arctan(x) − 1 < x < 1
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Section 10.8: Taylor and Maclaurin Series

Series Representations: We’ve seen that geometric series can be used to generate a power series for functions having a
special form, such as f(x) = 1

1− x or g(x) = 3
x− 2 . Can we also express functions of different forms as power series?

If we assume that a function f(x) with derivatives of all orders is the sum of a power series about x = a then we can
readily solve for the coefficients cn.

Suppose

f(x) =
∞∑
n=0

cn(x− a)n = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · ·

with positive radius of converges R. By repeated term-by-term differentiation within the interval of convergence, we obtain:

f ′(x) = 1 · c1 + 2 · c2(x− a) + 3 · c3(x− a)2 + 4 · c4(x− a)3 + · · ·+ n · cn(x− a)n−1 + · · ·

f ′′(x) = 2 · 1 · c2 + 3 · 2 · c3(x− a) + 4 · 3 · c4(x− a)2 + · · ·+ n · (n− 1) · cn(x− a)n−2 + · · ·

f ′′′(x) = 3 · 2 · 1 · c3 + 4 · 3 · 2 · c4(x− a) + · · ·+ n · (n− 1) · (n− 2) · cn(x− a)n−2 + · · ·

=
...

Since x = a is in the assumed interval of convergence, all of the above equations are valid when x = a:

f(a) = c0, f ′(a) = 1 · c1, f ′′(a) = 2 · 1 · c2, f ′′′(a) = 3 · 2 · 1 · c3, f (n)(a) = n! · cn

Solving for each ck gives:

c0 = f(a), c1 = f ′(a)
1 , c2 = f ′′(a)

2 · 1 , c3 = f ′′′(a)
3 · 2 · 1 , cn = f (n)(a)

n!

Thus, if f(x) has such a series representation, it must have the form

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n + · · · =
∞∑
n=0

f (n)(a)
n! (x− a)n.

On the other hand, if we start with an arbitrary function f(x) that is infinitely differentiable on an interval containing
x = a and use it to generate the series above, will the series then converge to f(x) at each x in the interval of convergence?
The answer is maybe.
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Definitions: Let f(x) be a function with derivatives of all orders throughout some open interval containing a. Then the
Taylor Series generated by f(x) at x = a is

∞∑
n=0

fn(a)
n! (x− a)n = f(a) + f ′(a)(x− a) + f ′′(a)

2! (x− a)2 + · · ·+ f (n)(a)
n! (x− a)n + · · · .

The Maclaurin Series generated by f(x) is the Taylor series generated by f(x) at a = 0.

Example 1: Find the Taylor series generated by f(x) = 1
x

at a = 2. Where, if anywhere, does the series converge to 1
x
?

n f (n)(x) f (n)(a)

0 1
x

1
2

1 (−1) · 1
x2 (−1) 1

22

2 (−1)2 · 2 · 1
x3 (−1)2 2 · 1

23

3 (−1)3 · 3 · 2 · 1
x4 (−1)3 3 · 2 · 1

24

4 (−1)4 · 4 · 3 · 2 · 1
x5 (−1)4 4 · 3 · 2 · 1

25

n (−1)n · n!
xn+1 (−1)n n!

2n+1

The key thing to do when looking for the
general term is to not simplify everything.
You should try and only group those terms
that come from the “same place.” For ex-
ample, when n = 2 we could have cancelled
a 2 from the numerator and denominator
of f ′′(2). But since the 2 in the numerator
came from differentiating and the 2 on the
denominator came from plugging in x = a,
we leave them alone. Leaving factors alone
this way will help you more easily see where
each number in the factor is coming from
and its relation to the value of n.

So, the Taylor Series generated by f(x) = 1
x

centred at a = 2 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n n!
2n+1

n! (x− 2)n =
∞∑
n=0

(−1)n
2n+1 (x− 2)n

Note that

f(x) =
∞∑
n=0

(−1)n
2n+1 (x− 2)n = 1

2 −
(x− 2)

22 + (x− 2)2

23 − · · ·+ (−1)n(x− 2)n
2n+1

is geometric with first term 1
2 and ratio r = − (x− 2)

2 . So it converges (absolutely) for

∣∣∣∣− (x− 2)
2

∣∣∣∣ < 1 =⇒ |x− 2| < 2 =⇒ 0 < x < 4.

Now we check the endpoints:

x = 0:
∞∑
n=0

(−1)n
2n+1 (0− 2)n =

∞∑
n=0

(−1)n(−2)n
2n+1 =

∞∑
n=0

2n
2n+1 =

∞∑
n=0

1
2 =⇒ diverges. (Also clear since f(x) =

1
x

is not defined at x = 0)

x = 4:
∞∑
n=0

(−1)n
2n+1 (4− 2)n =

∞∑
n=0

(−1)n2n
2n+1 =

∞∑
n=0

(−1)n
2 =⇒ diverges.

Thus the only values of x for which this Taylor Series converges are 0 < x < 4 .
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Definition: Let f(x) be a function with derivatives of order 1, . . . , N in some open interval containing a. Then for any
integer n from 0 through N , the Taylor polynomial of order n generated by f(x) at x = a is the polynomial

Pn(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n.

Just as the linearisation of f(x) at x = a provides the best linear approximation of f(x) in a neighbourhood of a, the
higher-order Taylor polynomials provide the best polynomial approximations of their respective degrees.

Example 2: Find the Taylor Series and Taylor polynomials generated by f(x) = cos(x) at a = 0.

n f (n)(x) f (n)(a)

0 cos(x) 1

1 − sin(x) 0

2 − cos(x) −1

3 sin(x) 0

4 cos(x) 1

2n (−1)n cos(x) (−1)n

2n+ 1 (−1)n+1 sin(x) (−1)n0

When terms are alternating between 0s and
non-zero terms, take a look at the parity
of the values of n for which they appear.
That is, check if all the 0s occur when
n is odd (or when n is even). Once you
figure out which is which you can ignore
all the zero terms by considering 2n or 2n+1.

If you are dealing with trigonometric func-
tions, it is likely that at some point there will
be some repetition happening. For example
here f (4)(x) = f(x). So then you might be
able to see what is happening by only using
the terms up until the repeat.

So the Taylor Series generated by f(x) = cos(x) at a = 0 is

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

(−1)n
(2n)! x

2n

To find the interval of convergence, we can use the Ratio Test:

∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣∣
(−1)n+1x2(n+1)

(2(n+1))!
(−1)nx2n

(2n)!

∣∣∣∣∣∣ =
∣∣∣∣ (−1)n+1x2n+2

(2n+ 2)! · (2n)!
(−1)nx2n

∣∣∣∣ = x2

(2n+ 2)(2n+ 1)
n→∞−→ 0

So this Taylor Series converges for all x ∈ R.

Finally, the Taylor polynomials are given by:

P2n(x) =
n∑
k=0

(−1)k
(2k)! x

2k = 1− x2

2 + x4

24 − · · ·+ (−1)n x2n

(2n)! .
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Example 3: Find the Maclaurin Series generated by f(x) = sin(x).

Recall that cos(x) is an even function and we have just discovered in Example 2 that only even powers of x occur in its
Maclaurin Series. One would expect then that since f(x) = sin(x) is an odd function that only odd powers of x will appear in
its Maclaurin Series. Indeed this is actually the case. Doing the same calculations as in Example 2 will yield the desired result.

Here however we will just invoke the power of integration: Since
ˆ x

0
cos(t) dt = sin(x) and

ˆ x

0

(−1)n
(2n)! t

2n dt = (−1)n
(2n)! ·

t2n+1

(2n+ 1)

∣∣∣∣∣
x

0

= (−1)n
(2n+ 1)! t

2n+1

∣∣∣∣∣
x

0

= (−1)n
(2n+ 1)!x

2n+1,

we have the Taylor Series generated by f(x) = sin(x) is

ˆ x

0

∞∑
n=0

(−1)n
(2n)! t

2n dt =
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1

Example 4: Find the Taylor Series generated by f(x) = ex.

Note that f (n)(x) = f(x) = ex for every positive integer n. So f (n)(0) = e0 = 1 for each n, so then the Taylor Series
generated by f(x) = ex at a = 0 is given by

∞∑
n=0

f (n)(a)
n! (x− a)n =

∞∑
n=0

xn

n!

Page 66 of 84



Section 10.9: Convergence of Taylor Series

Taylors Theorem: In the last section, we asked when a Taylor Series for a function can be expected to that (generating)
function. That question is answered by the following theorem:

If f(x) and its first n derivatives f ′(x), f ′′(x), . . . , f (n)(x) are continuous on the closed interval between a and b, and
f (n)(x) is differentiable on the open interval between a and b, then there exists a number c between a and b such that

f(b) = f(a) + f ′(a)(b− a) + f ′′(a)
2! (b− a)2 + · · ·+ f (n)(a)

n! (b− a)n + f (n+1)(c)
(n+ 1)! (b− a)n+1.

Interesting Fact: Taylor’s Theorem is a generalisation of the Mean Value Theorem!

Taylor’s Formula: If f(x) has derivatives of all orders in a n open interval I containing a, then for each positive integer
n and for each x ∈ I,

f(x) = f(a) + f ′(a)(x− a) + f ′′(a)
2! (x− a)2 + · · ·+ f (n)(a)

n! (x− a)n +Rn(x),

where

Rn(x) = f (n+1)(c)
(n+ 1)! (x− a)n+1

for some c between a and x.

Stating Taylor’s Theorem in this way says that for each x ∈ I,

f(x) = Pn(x) +Rn(x),

where the function Rn(x) is determined by the value of the (n+ 1)st derivative f (n+1)(x) at a point c that depends on
both a and x, and that it lies somewhere between them.

Definitions: The second equation is called Taylor’s formula. The function Rn(x) is called the remainder

of order n or the error term for the approximation of f(x) by Pn(x) over I.

If Rn(x) −→ 0 as n −→∞ for all x ∈ I, we say that the Taylor Series generated by f(x) at x = a converges to f(x) on I,
and we write

f(x) =
∞∑
n=0

f (n)(a)
n! (x− a)n.

Often we can estimate Rn(x) without knowing the value of c.
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Example 1: Show that the Taylor Series generated by f(x) = ex at x = 0 converges to f(x) for every value of x.

f(x) has derivatives of all orders on (−∞,∞). Using the Taylor Polynomial generated by f(x) = ex at a = 0 and Taylor’s
formula, we have

ex = 1 + x+ x2

2! + · · ·+ xn

n! +Rn(x)

where Rn(x) = ec

(n+ 1)!x
n+1 for some 0 between 0 and x. Recall that ex is an increasing function, so;

x > 0: 0 < c < x =⇒ e0 < ec < ex =⇒ 1 < ec < ex

x < 0: x < c < 0 =⇒ ex < ec < e0 =⇒ ex < ec < 1

x = 0: ex = 1, xn+1 = 0 =⇒ Rn(x) = 0

So,

x > 0: |Rn(x)| =
∣∣∣∣ ecxn+1

(n+ 1)!

∣∣∣∣ ≤ exxn+1

(n+ 1)!
n→∞−→ 0

x ≤ 0: |Rn(x)| =
∣∣∣∣ ecxn+1

(n+ 1)!

∣∣∣∣ ≤ |x|n+1

(n+ 1)!
n→∞−→ 0

Thus lim
n→∞

Rn(x) = 0 for all x, so the series converges to ex on (−∞,∞). Thus,

ex =
∞∑
n=0

xn

n! = 1 + x+ x2

2! + · · ·+ xn

n! + · · ·

This gives us a new∗ definition for the number e:

e =
∞∑
n=0

1
n! .

∗ Recall in Calc I we showed e = lim
x→0+

(1 + x)1/x using L’Hôpitals Rule.

The Remainder Estimation Theorem: If there is a positive constant M such that
∣∣f (n+1)(t)

∣∣ ≤M for all t between x
and a, inclusive, then the remainder term Rn(x) in Taylor’s Theorem satisfies the inequality

|Rn(x)| ≤M |x− a|
n+1

(n+ 1)! .

If this inequality holds for every n and the other conditions of Taylor’s Theorem are satisfied by f(x), then the series
converges to f(x).

Example 2: Show that the Taylor Series generated by f(x) = sin(x) at a = 0 converges to sin(x) for all x.

Recall that the Taylor Series generated by f(x) = sin(x) at a = 0 is
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1. Since for each n,
∣∣f (2n+1)(x)

∣∣ =

|cos(x)| ≤ 1 and
∣∣f (2n)

∣∣ = |sin(x)| ≤ 1, let M = 1. Then,

|R2n+1(x)| ≤ 1 · |x− 0|2n+2

(2n+ 2)!
n→∞−→ 0.

Thus the Taylor Series converges to f(x) = sin(x). That is,

sin(x) =
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1
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Using Taylor Series: Since every Taylor series is a power series, the operations of adding, subtracting and multiplying
Taylor series are all valid on the intersection of their intervals of convergence.

Example 3: Using known series, find the first few terms of the Taylor series for

1
3(2x+ x cos(x))

using power series operations.
We have,

1
3(2x+ x cos(x)) = 2

3x+ x

3 cos(x)

= 2
3x+ x

3
d

dx
sin(x)

= 2
3x+ x

3
d

dx

∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1

= 2
3x+ x

3

∞∑
n=0

(−1)n
(2n)! x

2n

= 2
3x+

∞∑
n=0

(−1)n
3 · (2n)!x

2n+1

= 2
3x+ x

3 −
x3

3 · 2! + x5

3 · 4! − · · ·

= x− x3

6 + x5

72 − · · ·

Example 4: For what values of x can we replace sin(x) by the polynomial x− x3

3! with an error of magnitude no greater
than 3× 10−4?
We use the fact that the Taylor series for sin(x) is an alternating series for every non-zero value of x. By the Alternating
Series Estimation Theorem (Section 10.6), the error in truncating

sin(x) = x− x3

3!

∣∣∣∣∣+ x5

5! − · · ·

is no greater than ∣∣∣∣x5

5!

∣∣∣∣ = |x|
5

120 .

So the error will be less than 3× 10−4 if

|x|5

120 < 3× 10−4 ⇐⇒ |x|5 < 360× 10−4 = 0.036 ⇐⇒ |x| < 5
√

0.036 ≈ 0.514.

So, if = −0.514 < x < 0.514, the error obtained from using x− x3

3! to approximate sin(x) will be less than 10× 10−4.

Moreover, by the Alternating Series Estimation Theorem, we know the estimate x− x3

3! is an underestimate of sin(x) when

x is positive, since x5

120 would be positive, and an overestimate if x is negative.
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Series

Evaluating Non-elementary Integrals: Taylor series can be used to express non-elementary integrals in terms of series.
Integrals like the one in the next example arise in the study of the diffraction of light.

Example 1: Express
ˆ

sin(x2) dx

as a power series.

sin(x) =
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1 =⇒ sin(x2) =
∞∑
n=0

(−1)n
(2n+ 1)! (x

2)2n+1 =
∞∑
n=0

(−1)n
(2n+ 1)!x

4n+2

So,

ˆ
sin(x2) dx =

ˆ ∞∑
n=0

(−1)n
(2n+ 1)!x

4n+2 dx = C +
∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)!x

4n+3

Example 2: Estimate

ˆ 1

0
sin(x2) dx

with an error of less than 0.001.
Using the previous example we see

ˆ 1

0
sin(x2) dx =

∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)!x

4n+3

∣∣∣∣∣
1

0

=
∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)! − [0] =

∞∑
n=0

(−1)n
(4n+ 3) · (2n+ 1)!

We want to use the Alternating Series Estimation Theorem (section 10.6). So we want∣∣∣∣ (−1)n+1

(4(n+ 1) + 3) · (2(n+ 1) + 1)!

∣∣∣∣ < 0.001 =⇒ 1
(4n+ 7) · (2n+ 3)! < 0.001

=⇒ (4n+ 7) · (2n+ 3)! > 1000

By trial and error we obtain n = 1 works. So then
ˆ 1

0
sin(x2) dx ≈ 1

3 −
1

7 · 3! ≈ 0.310 .
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If we extend this to 5 terms, we obtain

ˆ 1

0
sin(x2) dx ≈ 1

3 −
1

7 · 3! + 1
11 · 5! −

1
15 · 7! + 1

19 · 9! ≈ 0.310268303.

This gives an error of about 1.08× 10−9. To guarantee this accuracy (using the error formula) for the Trapezium Rule, we
would need to use about 8000 subintervals!

Euler’s Identity: A complex number is a number of the form a+ bi, where a and b are real numbers and i =
√
−1. So

then

i =
√
−1 i2 = −1 i3 = −

√
−1 i4 = 1 i4n+k = ik i2n+k = (−1)nik.

If we substitute x = iθ into the Taylor series for ex ans use the relations above, we obtain

eiθ =
∞∑
n=0

(iθ)n
n! =

∞∑
n=0

(
(iθ)2n

(2n)! + (iθ)2n+1

(2n+ 1)!

)
(split into even and odd terms)

=
∞∑
n=0

(
(−1)nθ2n

(2n)! + (−1)niθ2n+1

(2n+ 1)!

)
(apply the indentities of i)

=
∞∑
n=0

(
(−1)n
(2n)! θ

2n + i
(−1)n

(2n+ 1)!θ
2n+1

)
(rewrite for foreshadowing)

=
∞∑
n=0

(−1)n
(2n)! θ

2n + i

∞∑
n=0

(−1)n
(2n+ 1)!θ

2n+1 (break up sum)

= cos(θ) + i sin(θ). (know things)

Euler’s Identity:11e
iθ = cos(θ) + i sin(θ)

This identity is actually amazing. You can use this identity to derive all of the angle sum formulas, so you never need to
remember them all! Also we see that eiπ = −1, which we can rewrite to obtain

1
1e

iπ + 1 = 01
1

which combines 5 of the most important constants in mathematics; e, π, i, 1 and 0.
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Common Taylor Series

1. 1
1− x 1 + x+ x2 + x3 + · · ·

∞∑
n=0

xn |x| < 1

2. 1
1 + x

1− x+ x2 − x3 + · · ·
∞∑
n=0

(−1)nxn |x| < 1

3. ex 1 + x+ x2

2! + x3

3! + · · ·
∞∑
n=0

xn

n! |x| <∞

4. sin(x) x− x3

3! + x5

5! −
x7

7! + · · ·
∞∑
n=0

(−1)n
(2n+ 1)!x

2n+1 |x| <∞

5. cos(x) 1− x2

2! + x4

4! −
x6

6! + · · ·
∞∑
n=0

(−1)n
(2n)! x

2n |x| <∞

6. ln(1 + x) x− x3

3 + x5

5 −
x7

7 + · · ·
∞∑
n=1

(−1)n−1

n
xn −1 < x ≤ 1

7. tan−1(x) x− x3

3 + x5

5 −
x7

7 + · · ·
∞∑
n=0

(−1)n
2n+ 1x

2n+1 |x| ≤ 1
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Section 11.1: Parametrisations of Plane
Curves

Parametric Equations: Below we have the path of a moving particle on the xy-plane. We can sometimes describe such
a path by a pair of equations, x = f(t) and y = g(t), where f(t) and g(t) are continuous functions. Equations like these
describe more general curves than those described by a single function, and they provide not only the graph of the path
traced out but also the location of the particle (x, y) = (f(t), g(t)) at any time t.

(f(t), g(t))Position of particle at time t

Definitions: If x and y are given as functions

x = f(t) y = g(t),

over an interval I of t-values, then the set of points (x, y) = (f(t), g(t)) defined by these equations is a parametric curve .

The equations are parametric equations for the curve.

The variable t is the parameter for the curve and its domain I is the parameter interval .

If I is a closed interval, a ≤ t ≤ b, the initial point of the curve is the point (f(a), g(a)) and the

terminal point of the curve is (f(b), g(b)).

Example 1: Sketch the curve defined by the parametric equations

x = t2, y = t+ 1, −∞ < t <∞.

The (x, y) coordinates are determined by values for t, (t2, t+ 1).
t x y

−3 9 −2
−2 4 −1
−1 1 0
0 0 1
1 1 2
2 4 3
3 9 4 t = −3

t = −2

t = −1
t = 0

t = 1

t = 2

t = 3

1 4 9

−2
−1

1
2
3
4

Here the arrows indicate the direction of travel.
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Example 2: Identify geometrically the curve in Example 1 by eliminating the parameter t and obtaining an algebraic
equation in x and y.

Since both x and y are defined in terms of t, we can use substitution to eliminate the parameter:

Option 1:

y = t+ 1 x = t2

=⇒ y − 1 = t x = (y − 1)2

=⇒ x = y2 − 2y + 1

Option 2:

x = t2 y = t+ 1

=⇒ ±
√
x = t y = ±

√
x+ 1

=⇒ y =
√
x+ 1, y = −

√
x+ 1

Example 3: Graph the parametric curves

(a) x = cos(t), y = sin(t), 0 ≤ t ≤ 2π,

(b) x = a cos(t), y = a sin(t), 0 ≤ t ≤ 2π, a ∈ R.

(a)

t x y

0 1 0
π
4

√
2

2

√
2

2
π
2 0 1

3π
4 −

√
2

2

√
2

2

π −1 0
5π
4 −

√
2

2 −
√

2
2

3π
2 0 −1

7π
4

√
2

2 −
√

2
2

2π 1 0

t = 0, 2π

t = π
4

t = π
2

t = 3π
4

t = π

t = 5π
4

t = 3π
2

t = 7π
4

Here the arrows indicate the direction of travel.

We see then that these parametric equations correspond to travelling around the unit circle anticlockwise. Algebraically
we can verify this to see that

cos2(t) + sin2(t) = x2 + y2 = 1

which is precisely the equation for a circle of radius 1, centred at the origin.

(b) It should come at no surprise that these parametric equations correspond to travelling around the circle of radius a,
centred at the origin, anticlockwise.
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Example 4: The position P (x, y) of a particle moving in the xy-plane is given by the equations and parameter interval

x =
√
t, y = t, t ≥ 0.

Identify the path traced by the particle and describe the motion.

We can either find a table of values and plot or we can find a Cartesian equation. The latter is more straight forward and
we see that x = √y for y ≥ 0 (or y = x2 for x ≥ 0). So the curve is the part of y = x2 lying in the first quadrant of the
xy-plane.

Example 5 - Natural Parametrisation: A parametrisation of the function f(x) = x2 is given by

Let x = t. Then y = x2 = t2 and so the natural parametrisation of the
curve y = x2 is (t, t2) where −∞ < t <∞.

Example 6: Find a parametrisation for the line through the point (a, b) having slope m.

A Cartesian equation of the line through (a, b) with slope m is

y − b = m(x− a).

Let t = x− a. Then y − b = mt so y = mt+ b. Therefore a parametrisation is

(x, y) = (t+ a,mt+ b), −∞ < t <∞.

It is important that the usage of the phrase “a parametrisation” is precise here since parametrisations are not unique. Here
we could also use the natural parametrisation to obtain (x, y) = (t,mt− (ma− b)), −∞ < t <∞.
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Example 7: Sketch and identify the path traced by the point P (x, y) if

x = t+ 1
t
, y = t− 1

t
, t > 0.

t x y

0.1 10.1 −9.9
0.2 5.2 −4.8
0.4 2.9 2.1
1 2 0
2 2.5 1.5
4 4.25 3.75
10 10.1 9.9

(1) x+ y =
(
t+ 1

t

)
+
(
t− 1

t

)
= 2t

(2) x− y =
(
t+ 1

t

)
−
(
t− 1

t

)
= 2

t

(3) x2−y2 = (x+y)(x−y) = (2t)
( 2
t

)
= 4

The Cartesian equation x2 − y2 = 4 is the
standard form for the equation of a hyper-
bola. t = 0.1

t = 0.2

t = 0.4

t = 1

t = 2

t = 4

t = 10

10

−10

10
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Tangents and Areas: A parametrised curve x = f(t) and y = g(t) is differentiable at t if f(t) and g(t) are differentiable
at t. At a point on a differentiable parametrised curve where y is also a differentiable function of x, the derivatives dy/dt,
dx/dt and dy/dx are related by the Chain Rule:

dy

dt
= dy

dx
· dx
dt
.

If all three derivatives exist and dx

dt
6= 0, then

dy

dx
= dy/dt

dx/dt
.

Further we also have

d2y

dx2 =
d dydx/dt

dx/dt
.

Example 1: Find the tangent to the curve

x = sec(t), y = tan(t), −π2 < t <
π

2 ,

at the point (
√

2, 1).

First we need to calculate the value of t at the point (
√

2, 1). Since tan(x) is a one-to-one function on the parameter
interval we see that

t = tan−1(1) = π

4

Using this we calculate the slope of the tangent line.

m = dy

dx

∣∣∣
t=π

4

= dy/dt

dx/dt

∣∣∣
t=π

4

= sec2(t)
sec(t) tan(t)

∣∣∣
t=π

4

= sec(t)
tan(t)

∣∣∣
t=π

4

=
√

2
1 =

√
2

Thus the equation of the tangent line at the point (
√

2, 1) is

y =
√

2(x−
√

2) + 1 (
√

2, 1)
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Example 2: Find d2y

dx2 as a function of t if x = t− t2 and y = t− t3.

dx

dt
= 1− 2t dy

dt
= 1− 3t2

dy

dx
= dy/dt

dx/dt
= 1− 3t2

1− 2t

d

dt

(
dy

dt

)
= d

dt

(
1− 3t2
1− 2t

)
= (1− 2t)(−6t)− (1− 3t2)(−2)

(1− 2t)2

= −6t+ 12t2 + 2− 6t2
(1− 2t)2

= 2− 6t+ 6t2
(1− 2t)2

d2y

dx2 =
d dydx/dt

dx/dt
= 2− 6t+ 6t2

(1− 2t)3

Example 3: Find the area enclosed by the astroid

x = cos3(t), y = sin3(t), 0 ≤ t ≤ 2π.

1−1

1

−1

The shape we are dealing with is symmetric, so the area we are interested in
is four times the area beneath the curve in the first quadrant, corresponding
to 0 ≤ t ≤ π

2 . We will apply the Fundamental Theorem of Calculus using
substitution to express the curve y ad the differential dx in terms of t.

x = cos3(t)

dx = −3 cos2(t) sin(t) dt

u = sin(2t)

du = 2 cos(2t) dt

A = 4
ˆ 1

0
y(x) dx = 4

ˆ 0

π
2

sin3(t)
(
−3 cos2(t) sin(t)

)
dt

= 12
ˆ π

2

0
sin4(t) cos2(t) dt

= 12
ˆ π

2

0

(
1− cos(2t)

2

)2(1 + cos(2t)
2

)
dt

= 3
2

ˆ π
2

0
(1− cos(2t))2 (1 + cos(2t)) dt

= 3
2

ˆ π
2

0
(1− cos(2t))

(
1− cos2(2t)

)
dt

= 3
2

ˆ π
2

0
sin2(2t)− cos(2t) sin2(2t) dt

= 3
2

ˆ π
2

0

1− cos(4t)
2 dt− 3

2

ˆ t=π
2

t=0

u2

2 du

= 3
4

[
t− 1

4 sin(4t)
]π

2

0
− 3

4

[
u3

3

]t=π
2

t=0

= 3
4

[
t− 1

4 sin(4t)− 1
3 sin3(2t)

]π
2

0

= 3π
8
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Length of a Parametrically Defined Curve: Let C be a curve given parametrically by the equations

x = f(t), y = g(t), a ≤ t ≤ b.

We assume the functions f(t) and g(t) are continuously differentiable on the interval [a, b]. We also assume
that the derivatives f ′(t) and g′(t) are not simultaneously zero, which prevents the curve C from having any corners or cusps.

Such a curve is called a smooth curve .

A = P0

P1

P2

(f(tk−1), g(tk−1)) = Pk−1

Pk = (f(tk), g(tk))

B = Pn

∆xk

∆yk
Lk

Pk−1

Pk

The smooth curve C defined parametrically by the equations x = f(t) and y = g(t), a ≤ t ≤ b. The length of the curve
from A to B is approximated by the sum of the lengths of the polygonal path (straight line segments) starting at A = P0,
then to P1 and so on, ending at B = Pn.

The arc Pk−1Pk is approximated by the straight line segment shown on the right, which has length

Lk =
√

(∆xk)2 + (∆yk)2 =
√

[f(tk)− f(tk−1)]2 + [g(tk)− g(tk−1)]2

We know by the Mean Value Theorem there exist numbers t∗k and t∗∗k that satisfy

f ′(tk) = f(tk)− f(tk−1)
∆tk

and g′(tk) = g(tk)− g(tk−1)
∆tk

,

thus the above becomes

Lk =
√

[f ′(t∗k)]2 + [g′(t∗∗k )]2∆tk.

Summing up each line segment we obtain an approximation for the length L of the curve C;

L ≈
n∑
k=1

Lk =
n∑
k=1

√
[f ′(t∗k)]2 + [g′(t∗∗k )]2∆tk.

In an surprising turn of events, we obtain the exact value of L by taking a limit of this sum, resulting in a definite integral.
To summarise:

Definition: If a curve C is defined parametrically by x = f(t) and y = g(t), a ≤ t ≤ b, where f ′(t) and g′(t) are continuous
and not simultaneously zero on [a, b] and C is traversed exactly once as t increases from t = a to t = b, the length of C is
the definite integral

L =
ˆ b

a

√
[f ′(t)]2 + [g′(t)]2 dt.
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Example 4: Using the definition, find the length of the circle of radius r defined parametrically by

x = r cos(t), y = r sin(t), 0 ≤ t ≤ 2π.

dx

dt
= −r sin(t)

dy

dt
= r cos(t)

L =
ˆ 2π

0

√(
dx

dt

)2
+
(
dy

dt

)2
dt

=
ˆ 2π

0

√
(−r sin(t))2 + (r cos(t))2 dt

=
ˆ 2π

0

√
r2
(
sin2(t) + cos2(t)

)
dt

=
ˆ 2π

0

√
r2 dt

=
ˆ 2π

0
r dt = rt

∣∣∣2π
0

= 2πr

Example 5: Find the length of the astroid

x = cos3(t), y = sin3(t), 0 ≤ t ≤ 2π.

As in Example 3, the perimeter of the astroid is 4 times the length of the curve in the first quadrant.

dx

dt
= 3 cos2(t) sin(t)

dy

dt
= −3 cos2(t) sin(t)

u = sin(t)

du = cos(t) dt

L = 4
ˆ π

2

0

√(
dx

dt

)2
+
(
dy

dt

)2
dt

= 4
ˆ π

2

0

√
9 cos4(t) sin2(t) + 9 sin4(t) cos2(t) dt

= 4
ˆ π

2

0

√
9 cos2(t) sin2(t)

(
cos2(t) + sin2(t)

)
dt

= 4
ˆ π

2

0
3 cos(t) sin(t) dt

= 12
ˆ t=π

2

t=0
u du

= 12
[
u2

2

]t=π
2

t=0

= 12
[

sin2(t)
2

]π
2

0

= 12
[

1
2 − 0

]
= 6
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Definition: If a smooth curve x = f(t), y = g(t), a ≤ t ≤ b is traversed exactly once as t increases from a to b, then the
surface area of the surface of revolution generated by revolving the curve about the coordinate axes are as follows.

1. Revolution about the x-axis (y ≥ 0):

S =
ˆ b

a

2πy

√(
dx

dt

)2
+
(
dy

dt

)2
dt

2. Revolution about the y-axis (x ≥ 0):

S =
ˆ b

a

2πx

√(
dx

dt

)2
+
(
dy

dt

)2
dt

Example 6: The standard parametrisation of the circle of radius 1 centred at the point (0, 2) in the xy-plane is

x = cos(t), y = 2 + sin(t), 0 ≤ t ≤ 2π.

Use this parametrisation to find the surface area of the surface swept out by revolving the circle about the x-axis.

dx

dt
= − sin(t)

dy

dt
= cos(t)

S =
ˆ b

a

2πy

√(
dx

dt

)2
+
(
dy

dt

)2
dt

= 2π
ˆ 2π

0
(2 + sin(t))

√
(− sin(t))2 + (cos(t)) dt

= 2π
ˆ 2π

0
2 + sin(t) dt

= 2π [2t− cos(t)]2π0
= 2π [(4π − 1)− (0− 1)]

= 8π2
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Definition: To define polar coordinates, we first fix an origin O (called the pole ) and an

initial ray from O (usually the positive x-axis). Then each point P can be located by assigning to it a

polar coordinate pair (r, θ) in which r gives the directed distance from O to P and θ gives the directed
angle from the initial ray to the ray OP .

r

θ

P (r, θ)

O
x

Just like trigonometry, θ is positive when measured anticlockwise and negative when
measured clockwise. The angle associated with a given point is not unique.
In some cases, we allow r to be negative. For instance, the point P (2, 7π/6) can be
reached by turning 7π/6 radians anticlockwise from the initial ray and going forward 2
units, or we could turn π/6 radians clockwise and go backwards 2 units; corresponding
to P (−2, π/6).

Example 1: Find all the polar coordinates of the point P (2, π6 ).

P (2, π6 )

O

π
6

7π
6

− 5π
6

For r = 2,

θ = π

6 ,
π

6 ± 2π, π6 ± 4π, π6 ± 6π, . . .

For r = −2,

θ = −5π
6 , − 5π

6 ± 2π, − 5π
6 ± 4π, − 5π

6 ± 6π, . . .

So, {(
2, π6 + 2nπ

)
,

(
−2,−5π

6 + 2nπ
)
| n ∈ Z

}

Polar Equations and Graphs: If we fix r at a constant value (not equal to
zero), the point P (r, θ) will lie |r| unites from the origin O. As θ varies over any
interval of length 2π, P traces a what? A circle!

If we fix θ at a constant value and let r vary between −∞ and ∞, then the
point P (r, θ) traces a what? A line!

P (r, 0)

P (r, θ)

O

P (1, θ)

P (r, θ) x
θ
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Example 2: A circle or line can have more than one polar equation.

(a) r = 1 and r = −1 are equations for a circle of radius 1 centred at the origin.

(b) θ = π

6 ,
7π
6 , −5π

6 , . . . are all equations for the line passing through the Cartesian points (0, 0) and
(√

3
2 ,

1
2

)
.

Example 3: Equations of the form r = a and θ = θ0 can be combined to define regions, segments and rays. Graph the
sets of points whose polar coordinates satisfy the given conditions:

(a) 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π

2

x, θ = 0
O

θ = π
2

(b) −3 ≤ r ≤ 2 and θ = π

4

O x

P
(
2, π4

)

P
(
−3, π4

)

π
4

(c) 2π
3 ≤ θ ≤

5π
6

O

2π
3

5π
6
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Relating Polar and Cartesian Coordinates: When we use both polar and Cartesian coordinates in a plane, we place
the two origins together and take the initial ray as the positive x-axis. The ray θ = π/2, r > 0 becomes the positive y-axis.
The two coordinate systems are then related by the following:

x = r cos(θ), y = r sin(θ), r2 = x2 + y2.

Example 4: Given the polar equation, find the Cartesian equivalent:

(a) r cos(θ) = 2

x = 2

(b) r2 cos(θ) sin(θ) = 4

r cos(θ) · r sin(θ) = 4 =⇒ xy = 4

(c) r2 cos2(θ)− r2 sin2(θ) = 1

(r cos(θ))2 − (r sin(θ))2 = 1 =⇒ x2 − y2 = 1

(d) r = 1 + 2r cos(θ)

r2 = (1 + 2r cos(θ))2 = 1 + 4r cos(θ) + 4 (r cos(θ))2 =⇒ x2 + y2 = 1 + 4x+ 4x2

(e) r = 1− cos(θ)

r2 = (1− cos(θ)) r = r − r cos(θ) =⇒ r2 + r cos(θ) = r

=⇒
(
r2 + r cos(θ)

)2 = r2

=⇒
(
x2 + y2 + x

)2 = x2 + y2

Example 5: Find a polar equation for the circle x2 + (y − 3)2 = 9.

x2 + y2 − 6y + 9 = 9 =⇒
(
x2 + y2)− 6y = 0 =⇒ r2 − 6r sin(θ) = 0
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