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Abstract

We are looking at a model of preferential attachment graphs that
can evolve in five different ways. On any given iteration, a single vertex
may be connected to the graph, a path may be connected to the graph,
an edge may be added to the graph, an edge may be removed from
a graph, or a vertex may be removed from a graph, with each option
having a given probability of occurring. If a single vertex or a path is
added, one or both of the new vertices also may be connected to the
neighborhood of the existing vertex. We explore the order, size, and
degree distribution of the graphs which result from a large number of
iterations.

Acknowledgment Special thanks to Angela Collier and Blake Nickell for
all of their help with this project, and to Dr. R. Duane Skaggs for being an
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1 Introduction

How can the World Wide Web be related at all to the neurons in your brain?
What similarities could possibly exist between Hollywood actors and atoms
in a Bose-Einstein condensate? At first glance, many interesting systems like
these may seem to have very little in common with each other. However,
when inspected in a specific way, all of these show the same basic structure.
They are complex networks and can be described using graph theory.

We begin with a few definitions. A graph is defined as a finite nonempty
set V together with an irreflexive, symmetric relation R on V . The set of
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symmetric pairs in R is denoted by E. Each element of the set V is called a
vertex and each element of E is called an edge [5]. Graphs can be represented
pictorially where the vertices are shown as dots and edges are shown as lines
that connect those dots.

Figure 1: An example of a graph.

The order of a graph is |V |, describing the number of vertices in the
graph. Similarly, the size of a graph is |E|, describing the number of edges.
If an edge (u, v) ∈ E, u and v are said to be adjacent vertices and the edge
(u, v) is said to be incident to u and v. The number of edges incident to a
vertex v is called the degree of v [5]. We will denote the degree of a vertex v
by kv. See Chartrand [5] for any additional definitions that are not included
in this paper.

When graphs are used to represent complex networks, the vertices rep-
resent elements that comprise the system and the edges represent the in-
teractions between those elements. For example, a vertex may represent an
airport and an edge may represent a flight from one airport to another. Using
graphs to analyze complex networks allows results to relate to many different
disciplines, from biology to sociology to entertainment.

It has been observed that complex networks tend to follow a power law.
That is, the probability that any given vertex in a system has degree k
follows P (k) ∼ k−β, where β is a positive constant for that particular system.
Barabási and Albert [1] give a few examples of systems and their respective
β values. In the actor collaboration graph, a vertex represents an actor.
Two vertices are connected by an edge if those actors have been in the same
movie. They report that βactor = 2.3. Citations in science also form a
complex network where a vertex is a published paper and there is an edge
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between two vertices if one paper cites the other. It turns out that βcite = 3.
This power law is related to the 80/20 rule, where approximately 80% of
goods are owned by 20% of a population [2]. This distribution allows for the
existence of a few highly connected vertices, but the graph is predominately
comprised of vertices that are connected by only a few edges.

Also, the networks in question are quite large; they may have thousands,
millions, or even billions of vertices. But the power law distribution of the
degrees remains, regardless of how big the system is. For this reason, it
is frequently called scale-free. The scale-free power law is a distinguishing
feature of complex networks. It is important that a model is able to produce
this distribution.

Another feature of complex networks is known as the clustering effect.
That is, two vertices are more likely to be connected if they are both adjacent
to the same vertex [6]. For example in social networks, a person is more likely
to befriend someone if they share a common friend. In the World Wide Web,
two websites that linked to the same document are more likely to link to
each other, too. This clustering is very clear in some networks. For example,
the actor collaboration network demonstrates this clustering very well since
many actors are associated with a particular movie genre (such as comedy or
horror). So an actor will be more likely to be in the same move as another
actor if they are associated with the same genre [2].

In this paper, we present many models that can describe these complex
networks. We describe how subsequent models change to build upon the ideas
of previous models. Following suit, we present a new model with additional
features. We will focus on the global properties of these models, such as
order, size, average degree or the distribution of degrees. But let us begin
with begin with the classical model.

2 The Erdős-Rényi Model

Initially, complex networks were described by the Erdős-Rényi random graph
model. This model creates a graph Gn,p based on two parameters: a fixed
number of vertices n and a probability p. Each possible edge has the prob-
ability p of being in the graph. The resulting graph Gn,p will have different
properties with different values of p. Chung and Lu [6] summarize the six
ranges of p that produce these different features in the graph:

• When p = o(1/n), the graph Gn,p is a disjoint union of trees, where

3



Figure 2: In the Erdős-Rényi model, all of the edges had equal probability
of appearing, but only some of them actually end up in the final graph.

a tree is defined as a graph that has no cycles [5]. In this range of p,
trees on c vertices (for an integer c ≥ 3) will only appear when p is on
the order of n−c/(c−1).

• When p ∼ c/n where 0 < c < 1, the graph Gn,p consists of either trees
or unicyclic components (trees with an additional edge that creates a
single cycle). Formally, a component is a connected subgraph, where
a subgraph is connected if a path exists between any two vertices [5].
Almost all vertices are in components which are trees. The largest
connected component is a tree with about (c − 1 − log c)−1(log n −
5
2

log log n) vertices.

• When p ∼ 1/n + µ/n is the range in which the “giant” component
emerges. This range is sometimes called “the double jump”. For µ < 0,
all components are trees or unicyclic and most vertices are in compo-
nents of size O(1) and the largest component has size O(log n). When
µ = 0, the largest component has size on the order of n2/3. When µ is
positive, there are still a number of small components of size O(log n),
but most of the vertices are contained in a unique giant component,
which has size O(n).

• For p ∼ c/n where c > 1, there is a single giant component and all other
components are mostly relatively small trees. About n− f(c)n+ o(n)
of the vertices are in these small trees and approximately f(c)n vertices
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are in the giant component, where

f(c) = 1− 1

c

∞∑
i=1

ii−1

i!
(ce−c)i.

• For p = c log n/n with c ≥ 1, the graph Gn,p is almost surely connected.

• For p ∼ ω(n) log n/n, the graph Gn,p is almost surely connected and
the degrees of almost all vertices are asymptotically equal. See [6] for
a definition of ω(n).

However, the degrees of the vertices in a graph produced in the Erdős-Rényi
model follow a Poisson distribution. That is, as stated in [1], the probability

that a vertex has degree k is P (k) = e−λλk

k!
where

λ = n

(
n− 1

k

)
pk(1− p)n−k−1.

A scale-free power law is quite different, so the Erdős-Rényi model does
not capture some important properties of these complex networks. It turns
out that the scale-free power law can be brought about by employing two
mechanisms: growth and preferential attachment.

3 Growth and Preferential Attachment

Simply put, preferential attachment is the idea that a vertex is more likely
to connect to highly connected vertices. Just as the websites with many
links tend to get more links and the people with a lot of money are the ones
that get even more money, the vertices with many incident edges are the
ones that tend to get more edges. Preferential attachment is a rich-get-richer
phenomenon. It is a local mechanism that changes the global properties of
the graph [1, 2].

Preferential attachment is important in constructing graphs that model
complex networks, but so is growth. Barabási and Albert [1] determined that
one or the other is not sufficient to produce the scale-free power law; both
mechanisms should be present. In one model, they include growth without
preferential attachment. At each time step t, a new vertex is introduced into
the graph and connected to an existing vertex chosen at random. This is
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Figure 3: The complete graph on seven vertices, K7.

reported to result in a degree distribution that follows a decaying exponential,
P (k) ∼ e−αk, rather than a power law.

A second model incorporates preferential attachment without growth.
Beginning with n vertices, each time step adds an edge between two chosen
vertices with

P (ki) =
ki∑
j kj

being the probability of choosing a vertex i. The degree distribution of this
model initially resembles a power law, but this changes as t grows. Since n
is unchanged, at t ' n2, every two of the vertices are adjacent. This is called
a complete graph and is denoted Kn [5]. An example of a complete graph is
shown in the figure. After every edge is included, the graph remains static.

Since both of these models fail to produce the scale-free power law,
Barabási and Albert [1] concluded that both growth and preferential at-
tachment are essential for these graphs to describe the real-world systems
with which we are concerned.

Theorem 1. A scale-free power law distribution can result from implemen-
tation of both growth and preferential attachment.

Since the scale-free power law is desired in modeling complex networks,
growth and preferential attachment are extensively employed in existing mod-
els. There are many different ways to incorporate these mechanisms into a
model and their implementation affects the global properties of the resulting
graph.
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4 Existing Dynamic Models

4.1 The Barabási-Albert model

Unlike the Erdős-Rényi model, the Barabási-Albert model [1] is dynamic.
It begins with a small number (n0) of vertices and a small number (m0) of
edges. At each time step t, a new vertex is introduced to the system and
connected to r other vertices. These vertices are chosen randomly with the
probability P of choosing a vertex i depending upon the degree of i. That
is,

P (ki) =
ki∑
j kj

.

Notice that this simple rule incorporates both growth and preferential at-
tachment into the model. The resulting degree distribution indeed follows
a scale-free power law. When r = 5, β is observed to be 2.9. This is very
similar to the exponent of some of the real-life networks that are discussed
in [1]. Since each time step adds exactly one new vertex to the graph, the
expected order at time t is N(t) = n0 + t. Each vertex is then connected to
exactly r vertices. This introduces r edges at each time t, so the expected
size of the graph at time t is M(t) = m0 + rt.

4.2 The Bollobás-Riordan Model

Bollobás and Riordan proposed a very similar model that eliminates the need
for an n0 and an m0 [3, 4]. The initial graph contains no vertices. At each
time step t, a new vertex is added. Then r edges are introduced, all of which
have the new vertex as one endpoint. The other endpoint will be either an
existing vertex or the new vertex itself. In this way, the Bollobás-Riordan
model allows for loops and multiple edges. For r = 1, the probability that
the new vertex will connect to a vertex i is

P (ki) =


ki

2t− 1
1 ≤ i ≤ t− 1

1

2t− 1
i = t

.

In this model, a loop increases the degree of a vertex by 2. So the 2t−1 in the
denominator is actually the sum of the degrees of all of the vertices at time
t− 1, plus the end of the new edge that is certain to be incident to the new
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vertex. Observe that as t becomes large, the probability that the new vertex
connects to itself becomes quite small. Therefore, loops become uncommon
and thus do not contribute much to the global properties of the graph. The
only difference between this model and the Barabási-Albert model is which
vertices the new vertex can connect to, so the expected order is N(t) = t and
the expected size is M(t) = rt. Since the initial graph contains no vertices,
n0 and m0 are both zero.

4.3 Chung-Lu Models

Chung and Lu [6] present many models for complex networks. Only a few
are described below, those that are most closely related to our project.

A growth-deletion model is presented in which at each time t, one of four
things will happen.

• With probability pa, a new vertex is added to the graph and connected
to an existing vertex that is selected with a probability proportional to
its degree.

• With probability pb, a random edge is added between two existing
vertices chosen with a probability proportional to the degree of each.

• With probability pc, a vertex is chosen at random and is deleted, along
with all of its incident edges.

• With probability pd, a randomly chosen edge is deleted.

The assumption here is that pa > pc and pb > pd so that the graph grows.
This model is a little more cognizant of how some real networks evolve. Many
real-world systems allow their elements to be removed from the system or to
interact with other preexisting elements. This model almost surely displays
the scale-free power law, with β = 2 + (pa + pb)/(pa + 2pb− pc− 2pd). Recall
that this remains constant throughout the evolution of the graph. Also, the
expected average degree is given as (pa + pb − pd)/(pa + pc).

Another interesting model proposed by Chung and Lu [6] is the duplication-
deletion model. This begins with some initial graph G0. For each time step
t, one of two things will occur. With probability r, a vertex is “duplicated”.
That is, a vertex is selected with probability p and is connected to a new
vertex. This new vertex is then connected to the neighborhood of the se-
lected vertex. This means the new vertex is connected to each neighbor of
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the selected vertex. Hence the selected vertex is duplicated, since it is now in-
distinguishable from the new vertex. However, for times when a duplication
step is not carried out, (meaning that for each time step t, with probability
1− r) a random vertex is selected and deleted, along with all of its incident
edges. It is assumed that r > 1/2 so that the graph grows with time. This
model results in a power-law degree distribution where β satisfies

(β − 1)(1 + p− 1

r
) = 1− pβ−1.

The duplication-deletion model focuses heavily on the clustering effect that
is observed in many of the networks that we are trying to describe, since it
adds edges to the neighborhood of a vertex.

Even more closely related to the clustering effect is Chung and Lu’s mixed
duplication model [6] that does not allow for deletion. This model begins with
some initial graph G0 and at each time step t, one of two things will occur.
With probability q, a new vertex is connected to an existing vertex that
is selected randomly and uniformly from Gt−1. Then for each neighbor of
the selected vertex, with probability p, the neighboring vertex is connected
to the new vertex. For all other times (that is, for each time step t, with
probability 1 − q), a new vertex is connected to an existing vertex that is
selected randomly and uniformly from Gt−1. Then edges are added between
the new vertex and every neighbor of the selected vertex. Note that this
model does not incorporate preferential attachment; the vertices all have an
equal chance of being selected. However, this still generates a power law
distribution with an exponent β that satisfies

β(1− q) + pq(β − 1) = 1− qpβ−1.

5 Off-line and On-line Models

Chung and Lu [6] distinguish between two distinct types of models. An off-
line model has a fixed number of vertices. A graph is grown only by the
addition or deletion of edges while the number of vertices is held constant.
The Erdős-Rényi model is an example of an off-line model. On-line models
are dynamic and so the order and size of the graph can change at each time
step that is taken, according to some rule. Notice that growth is explicitly
incorporated into on-line models. One may think of an on-line model as a
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sequence of off-line models where the graph at time t may depend on the
graph at a previous time. Clearly, an on-line model is more difficult to
analyze than an off-line model, but on-line models come closer to reflecting
the evolution of the complex networks that we see in the real world.

Nonetheless, all of the aforementioned models focus heavily on the end
result. They look at the properties that a graph will have after some large
number of iterations and do not place too much emphasis on how realistic
the growth of that graph was. In the spirit of modeling the processes used in
the evolution of these systems, we propose an on-line random graph model
that grows with a few additional features.

6 Description of Our Model

Our model is slightly more involved than the other models that have been
presented. We are interested in modeling a system like Facebook. In this
case, a vertex is a Facebook profile and two vertices are connected by an
edge if the corresponding profiles are friends on Facebook. We assume that
when Facebook was first created, there was a very small number of profiles
and each profile was friends with every other profile. Therefore, our model
begins with a complete graph K4. At each time step t, one of five things will
happen.

• With probability p1, a single vertex will be added and connected to an
existing vertex chosen at random.

• With probability p2, two vertices joined by an edge, called a path P2,
will be added and one of the vertices (called the strong vertex ) will be
connected to an existing vertex chosen at random.

• With probability p3, an edge will be added between two randomly cho-
sen nonadjacent vertices.

• With probability p4, a randomly chosen edge will be deleted.

• With probability p5, a randomly chosen vertex will be deleted along
with all incident edges.

Our motivation for adding a P2 was to model a parent and a child joining
Facebook. The strong vertex represents the child’s profile and the parent’s
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profile is represented by the weak vertex, the remaining vertex in the P2.
Note that whenever a P2 is introduced, the strong vertex always connects
to a selected vertex in the existing graph. This is consistent with the child
becoming Facebook friends with someone who already has a Facebook profile.

Additionally, a common rule in households is that a child may use Face-
book only if that child adds their parent and the parent can be friends with
all of the child’s friends. That idea involves two connected vertices being
introduced at the same time (which is why we add a P2). But in order
to model the parent adding all of the child’s friends, we must have some
additional parameters.

• If a P2 is added, let h0 be the probability that the weak vertex also
connects to the selected vertex.

• If a P2 or a single vertex is added, let h1 be the probability that the
(strong) vertex connects to the neighborhood of the selected vertex.

• If a P2 is added, the weak vertex has connected to the selected vertex,
and the strong vertex has connected to the neighborhood of the selected
vertex, let h2 be the probability that the weak vertex connects to the
neighborhood of the selected vertex.

For clarification, the reason h1 applies to a single vertex or a P2 is because
the strong vertex should act independently of the weak vertex. Essentially,
the strong vertex should behave as if it were a single vertex. Therefore,
both should have the probability h1 of connecting to the neighborhood of
the selected vertex. Also, it only makes sense for the weak vertex to connect
to the neighborhood if it has connected to the selected vertex itself and
the strong vertex has connected to the neighborhood of the selected vertex.
Both conditions must be met in order for the weak vertex to connect to
the neighborhood. In this sense, the behavior of the weak vertex is entirely
dependent upon the behavior of the strong vertex.

7 Expected Order and Size of Our Model

Naturally, the equations for the expected order and size for our model will
be a bit involved since ours is more complicated than the other models that
have been presented. Nevertheless, we have developed formulas that give the
expected order and size of our model at any given time t.
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7.1 Expected Order

Proposition 1. The expected order of our model at time t is given by N(t) =
4 + t(p1 + 2p2 − p5).

Proof. Initially, we have a K4, so N(0) = 4. After that, p1, p2, and p5 are
the only probabilities associated with the number of vertices. The P2 step
adds two vertices instead of one and the deletion step removes one vertex.
We multiply the number of vertices added in a given step by the probability
of that step occurring to get p1 + 2p2 − p5. Since this quantity remains
unchanged for each time step t, the expected order is

N(t) = 4 + t(p1 + 2p2 − p5).

7.2 Expected Size

Proposition 2. The expected size of our model at time t is given by

M(t) = M(t−1)+p1+(2+h0)p2+p3−p4+[h1(p1+p2+p2h0h2)−p5]
2M(t− 1)

N(t− 1)
.

Proof. Before taking a time step t, the number of edges in the graph is
denoted M(t − 1). Therefore to find the size after t time steps, M(t), we
need only add the value M(t−1) to the expected number of edges introduced
into the graph from an individual time step. There are two portions of the
time step that will added edges.

Portion 1: Addition of vertices or explicit addition or removal of edges
We expect one edge to be added with the probability p1. This edge

connects a single vertex to a selected vertex. With probability p2, two edges
will be added. One of these connects the strong vertex to the weak vertex and
the other connects the strong vertex to a selected vertex. Additionally, with
probability p2h0, the weak vertex connects to the selected vertex. One edge
will be added with probability p3 from connecting two existing nonadjacent
vertices and −1 edges will be added with probability p4 when a random edge
is deleted. Summing all of these contributions, we find that the expected
number of edges to be contributed from the first portion of a time step is
p1 + (2 + h0)p2 + p3 − p4.

Portion 2: Connecting a new vertex to a neighborhood or deleting a vertex
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The average degree of a vertex must be considered when a vertex connects
to a neighborhood and when a vertex is deleted (since all of the incident edges
are deleted along with the vertex). Because loops and multiple edges do not
occur in our model, each incident edge connects a vertex to a unique neighbor.
The average degree of a vertex at a time t is given by 2M(t)/N(t). Therefore,
when a vertex connects to a neighborhood or when all the incident edges of
a vertex are deleted, 2M(t − 1)/N(t − 1) vertices are added or removed
respectively. Now we must consider the probability of connecting a vertex
to a neighborhood. A single vertex may connected to the neighborhood
of the selected vertex with probability p1h1. The probability that a P2 is
added and the strong vertex is connected to the neighborhood of the selected
vertex is p2h1. Due to its dependence on the strong vertex, the probability
that the weak vertex is connected to the neighborhood of the selected vertex
is given by p2h0h1h2. Finally, all of the incident vertices of an existing vertex
are removed with p5. Summing these probabilities and multiplying by the
expected average degree of a vertex in the existing graph (that is, at time
t− 1) gives [h1(p1 + p2 + p2h0h2)− p5](2M(t− 1))/N(t− 1).

Adding the number of edges in the existing graph and those introduced
by portions 1 and 2 of an individual time step, we find

M(t) = M(t−1)+p1+(2+h0)p2+p3−p4+[h1(p1+p2+p2h0h2)−p5]
2M(t− 1)

N(t− 1)
.

Due to the complexity of this model, two formulas for the expected size
were developed. It can occasionally be more helpful to use the equivalent
expression below.

Proposition 3. The expected size of our model at time t is given by

M̃(t) = 6+ t[p1 +(2+h0)p2 +p3−p4]+ [h1(p1 +p2 +p2h0h2)−p5]
t−1∑
i=0

2M̃(i)

N(i)
.

Proof. To show that M̃(t) gives the expected size at a time t, we need only
prove it is equivalent to M(t). We proceed by induction.

Base case: t = 1
By definition of M̃(t),

M̃(1) = 6+(1)[p1+(2+h0)p2+p3−p4]+[h1(p1+p2+p2h0h2)−p5]
(1)−1∑
i=0

2M̃(i)

N(i)
.
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M̃(1) = 6 + [p1 + (2 + h0)p2 + p3 − p4] + [h1(p1 + p2 + p2h0h2)− p5]
2M̃(0)

N(0)
.

The value of both M(0) and M̃(0) is defined to be 6, since our model begins
with a K4. Substituting in, we find

M̃(1) = M(0)+ [p1 +(2+h0)p2 +p3−p4]+ [h1(p1 +p2 +p2h0h2)−p5]
2M(0)

N(0)
.

Since 0 = t − 1, the right-hand side is exactly the value of M(1). So this
implies M̃(1) = M(1).

Induction step:

M̃(t+ 1) = 6 + (t+ 1)[p1 + (2 + h0)p2 + p3 − p4]

+[h1(p1 + p2 + p2h0h2)− p5]
t∑
i=0

2M̃(i)

N(i)

Distributing through the second term and pulling the last term out of the
sum, this implies

M̃(t+1) = 6+t[p1+(2+h0)p2+p3−p4]+[h1(p1+p2+p2h0h2)−p5]
t−1∑
i=0

2M̃(i)

N(i)

+[p1 + (2 + h0)p2 + p3 − p4] + [h1(p1 + p2 + p2h0h2)− p5]
2M̃(t)

N(t)
.

Notice that the first three terms of this expression are exactly the value of
M̃(t). Since the induction hypothesis states that M̃(t) = M(t), this implies

M̃(t+1) = M(t)+p1+(2+h0)p2+p3−p4+[h1(p1+p2+p2h0h2)−p5]
2M(t)

N(t)
.

M̃(t+ 1) = M(t+ 1)

7.3 Particular Results

Although the graphs produced by our model are random, we can use these
formulas to anticipate what the resulting graph will be for certain cases.
This has been helpful in checking the program that is mentioned in the next
section.
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There are many ways for our model to produce a complete graph. In a
complete graph, the union of any selected vertex with its neighborhood will
be the vertex set of the graph. Therefore, whenever a new vertex connects to
the neighborhood of a vertex selected from a complete graph, it will connect
to every vertex in the existing graph. This will result in another complete
graph. Thus we can ensure that a graph produced from our model is complete
at any time t. We need only ensure that each time a new vertex is introduced,
it always connects to the neighborhood of the selected vertex and we cannot
allow single edges to be deleted. That is to say that h0, h1 and h2 must
all equal 1 and p4 = 0. Note that we do not prohibit the deletion of a
random vertex. This is because when a vertex is deleted, only the edges
that are incident to it will be removed. Since all of the edges between the
remaining vertices are left untouched, the graph is still complete after a vertex
is removed.

By inspecting the formulas for the expected order and size, one must
note that a negative value implies that we expect an empty graph. Although
one may expect an empty graph any time N(t) is zero, it takes more severe
restrictions to guarantee that the graph is empty. Clearly, to get an empty
graph, t must be greater than 4, since it takes at least that long to remove all
four vertices from the initial graph. Additionally, p5 must be the only non-
zero probability (discounting h0, h1, and h2, since these only matter when p1
or p2 are non-zero). In this case, the graph will be empty for all t ≥ 4.

8 Simulations

We are able to compare these expected values with experimental results.
A program has been written in Maple that will grow these random graphs
according to our model. It outputs many of the global properties that we
are concerned with. We can analyze the output of this program and show
specific examples of graphs constructed according the rules in our model.

For these first simulations, we will use a certain set of probabilities that
seem reasonable for a system such as Facebook. These are p1 = 0.4, p2 =
0.35, p3 = 0.15, p4 = 0.05, p5 = 0.05, h0 = 0.5, h1 = 0.25, h2 = 0.2. A specific
example of a graph grown according to these probabilities is shown in the
figure.

The expected order at t = 30 is 41.5 and the expected size is 60.0. Run-
ning the program 20 times resulted in a mean order of 35.1 with standard
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Figure 4: At t = 30, this graph has order 39 and size 81.

deviation 5.5 and a mean size of 61.9 with standard deviation 18.9. Due
to the random nature of these graphs, the order and size will vary quite a
bit from run to run, particularly when t is lower. For example, in these 20
runs, the size ranged from 27 to 111! So one should not be surprised that
the standard deviation is rather large compared to the mean. A plot of the
degrees for the example above is also provided.

Figure 5: The degree distribution of a graph at t = 30 with a fitted power
law (shown in green) and exponential (shown in red)

Fitting curves to the data, we see that neither the power law nor the
exponential are a particularly good approximation. To evaluate the goodness
of fit, we look at the value of R2. A value of R2 that is closer to 1 indicates
a better fit. The values of R2 for these are only 0.608 and 0.649 respectively.
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The difficulty in fitting curves these curves is likely due to the small value of
t.

Due to time constraints, only two runs were done at t = 300. The order
for the first was 318 and its size was 603. The second had order 334 and size
579. The expected order and size were 379.0 and 545.0 respectively. One
must keep in mind that these are only two specific examples, so differences
between the expected values and the actual values are anticipated. The
degree distribution is of particular interest in this case. The degree sequences
of these examples are quite interesting. Plots of the degrees of these examples
are shown.

Figure 6: The degree distribution of a graph at t = 300 with a fitted power
law (shown in green) and exponential (shown in red)

Figure 7: The degree distribution of a graph at t = 300 with a fitted power
law (shown in green) and exponential (shown in red)
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Disregarding the number of isolated vertices (vertices of degree zero), a
power law and a decaying exponential were fitted to the data. For the power
law, R2 = 0.794 for the first example and R2 = 0.878 for the second exam-
ple. The exponential has R2 = 0.810 for the first example and R2 = 0.947
for the second example. In both cases, the decaying exponential is a closer
fit. Recall the conclusion of Barabási and Albert. If a model incorporates
growth without preferential attachment, the degree sequence follows a de-
caying exponential [1]. Therefore, we should not be surprised that our model
approximately follows a decaying exponential rather than a power law.

9 Conclusions and Future Work

The simulations are more or less consistent with our expected results for
order, size, and distribution of degrees. Yet despite all of the examples and
results that have been presented, there are still many aspects that should be
explored further. We would like to incorporate some different ideas into our
model and examine some additional properties.

9.1 Diameter

The distance between two vertices u and v is the shortest number of edges
in a trail between u and v. The diameter of a graph is the largest distance
between any two vertices in the graph.

Bollobás and Riordan were able to put bounds on the diameter of a
graph constructed with their model [3]. We are interested in doing something
similar for our model. Due to time constraints, we were unable to explore
the diameter in detail. However, this is a future direction for the project.

9.2 Add Preferential Attachment

The involvement of preferential attachment has been observed to change
the expected order and size of a model. We now revisit the formulas for
these properties in our model and inspect how they may be different when
preferential attachment is included in the model.

Considering the expected order, preferential attachment will only affect
which vertices a new vertex connects to, not whether or not a vertex is added.
So at any time, the expected number of vertices in the graph only depends
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on p1, p2, and p5. Since these are parameters that will not be changed by
the inclusion of preferential attachment, the expected order for a preferential
attachment model should remain the same.

The expected size of the graph, however, will be altered. Let us consider
the terms of M̃ separately. The first term, t[p1 + (2 +h0)p2 + p3− p4], counts
the expected number of edges that would be added only from which step is
taken at a time t. Again, preferential attachment will only change where
these edges are attached, not whether or not they are there. Therefore,
this term of the expected size will be unaffected by preferential attachment.
The second term, [h1(p1 + p2 + p2h0h2)− p5]

∑t−1
i=0(2M̃(i)/N(i)), counts the

expected number of edges added to the neighborhood of a selected vertex.
This term has two distinct parts. First, [h1(p1 + p2 + p2h0h2)− p5] calculates
the chance that edges will be added or removed from a neighborhood and∑t−1

i=0(2M̃(i)/N(i)) calculates the average degree of a vertex at every previous
time. The chance that edges will be added or removed from a neighborhood
remains constant for every vertex and there is no reason for preferential
attachment to change that. The average degree of a vertex, however, will
be greatly changed. Since the vertices with many edges are more likely to
gain additional edges, the expected degree of a vertex would no longer be
2M̃(t)/N(t). Thus, it is the only part of the expected size that will be
affected by the addition of preferential attachment. Our conjecture is that
this portion of the formula (and subsequently M̃(t) as a whole) will increase
due to preferential attachment.

With additional analysis, we would like to explore these conjectures. In
that case, it would be interesting to revisit the distribution of degrees as well.
Barabási and Albert showed that the addition of preferential attachment
can change the degree sequence from a decaying exponential to a power
law [1]. However, in Chung and Lu’s duplication-deletion model and their
mixed duplication model, the degrees followed a power law without using
preferential attachment [6]. Since our model incorporates features of all three
of these models, it would be interesting to see how the degree distribution
changes with preferential attachment.

9.3 Non-traditional Preferential Attachment

Observe that in our model, the eight probability parameters are absolutely
constant. When a single vertex connects to a selected vertex, the probabil-
ity that it will add to the neighborhood of that selected vertex will always
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be h1, no matter how many other vertices are in that neighborhood. When
preferential attachment is included, it will make vertices more likely to select
a highly connected vertex. If h1 is absolutely constant, the new vertex is
just as likely to connect to the large neighborhood as it is to a smaller neigh-
borhood. This is not what we see in a system like Facebook. If an existing
profile has a very small number of friends, a new friend is more likely to
know all of the friends of that profile, whereas if the existing profile has a
very large number of friends, a new friend is not as likely to know them all.
Therefore, the probability that a vertex connects to the neighborhood of the
selected vertex should decrease with the degree of the selected vertex.

This idea is very similar to preferential attachment, but it is distinct
because it is not concerned with just where the edges are added, but rather
whether or not they will be added at all. Hence it is a “non-traditional”
preferential attachment.

On a related note, we are also interested in modifying the meaning of p5
so that it will depend on the degree of a vertex. In this case, the probability
of deleting a vertex would decrease with the degree of a vertex. That is,
vertices with low degrees would be more likely to be selected for deletion.
This idea is also makes sense in a Facebook system. A profile that has very
few friends is more likely to be deleted than a profile that has many friends.

Including these ideas in our model may drastically change some of the
global properties. Continuing the development of our model will be very
interesting. Hopefully it will answer some of the questions that have been
raised.
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