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Why High Dimension?

Some of the most pressing scientific problems
challenge our computational ability

Atmospheric modeling: predicting climate change

Monitoring threat activities

Contaminant transport

Optimal engineering design

Medical diagnostics

Modeling the internet

Option pricing, bond valuation

....
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Your Favorite Application
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The HD Challenge

One common characteristic of these problems is they
involve functions with many variables or parameters

Mathematically this means we are faced with
numerically approximating a high dimensional function

F : [0, 1]D → X

X a Banach space (often just IR or IRm)

D large and possibly infinite

Typical Computational Tasks

Create an approximation F̂ to F
Evaluate some quantity of interest: Q(F )
Q is some linear or nonlinear functional:
· Q(F ) is a high dimensional integral of F
· Q(F ) is the max or min of F
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Approximation Theory

The last 50 years have been Golden Years in AT

We briefly describe the AT setting

Prescribe a way to measure error: a norm ‖ · ‖X
Specify the type of approximation, i.e., the sets of
functions Xn, n ≥ 0, which will be used to
approximate

There are typically two types of approximation

Linear Approximation: Xn is a linear space of
dimension n in X

Non- Linear Approximation: Xn is a nonlinear set
depending on n parameters (n degrees of freedom)

Given F , we have the error of approximation

En(F )X := E(F,Xn)X := infg∈Xn
‖F − g‖X
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The Performance of (Xn)n≥0

There are several ways to evaluate the performance of
(Xn) and compare different methods

Checking performance on one function F makes no
sense

For any compact set K ⊂ X we define

En(K)X := E(K,Xn)X := sup
F∈K

E(F,Xn)X , n ≥ 0

Approximation Class: For each r > 0 define
Ar((Xn)n≥0, X) as the set of all F ∈ X such that

‖f‖Ar := sup
n≥0

En(F ) < ∞
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Linear Methods of Approximation

Simplest Example: X = C[0, 1]

Xn algebraic polynomials of degree n− 1, i.e.,

P =
∑n−1

k=0 ckx
k

Xn p.w. polynomials of fixed degree k on equidistant
partition of [0, 1]

Xn = span(φ1, . . . , φn) with φ1, . . . , φn ∈ X fixed and
linearly independent

Splines, Fourier, Wavelets
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Non- Linear Methods

Simplest Example: X = C[0, 1]

Σn nonlinear set

Piecewise Polynomial Approximation of Degree k:
g ∈n is a p.p. on a partition with n cells

the partition can be chosen depending on F

n term approximation from a dictionary
D = {ψ1, . . . , ψN}

D usually has structure: frame or basis
Σn := {g =

∑
k∈Λ ckψk : #Λ = n}

Manifold Approximation:
Two mappings: a : X → IRn and M : IRn → X
Σn := {M(z) : z ∈ IRn}
The points M(z) live on a manifold
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Typical Approximation Questions

How fast does En(F ) tend to zero?

This requires some information about F

F is in some model class K

K is a compact set in X which quantifies what we
know about F from the application

For example a regularity theorem in PDEs

Have we chosen the best method of approximation?

Best over all linear methods ?

Best over all nonlinear methods?

This is answered by concepts like widths and entropy

Can we realize the approximation numerically?

This requires information about F through data or
queries

USC 2019 – p. 9/45



Model Classes

Classical model classes K based on smoothness

F has smoothness (of order s)

F is in Cs, Sobolev space W s(Lp), Besov space

AT says n computations can only capture F to accuracy

C(D, s)n−s/D where D is the number of variables

If D is large than s must also be very large for any
reasonable accuracy: Curse of Dimensionality

But we have no control over s which is inherent in the
real world problem

So conventional assumptions on F and conventional
numerical methods will not work

Also beware that C(D, s) grows exponentially with D
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Example (Novak-Wozniakowski)

To drive home the debilitating effect of high dimensions
consider the following example

Ω := [0, 1]D, X = IR, K := {F : ‖DνF‖L∞
≤ 1, ∀ν}

Any algorithm which computes for each F ∈ K an

approximation F̂ to accuracy 1/2 in L∞ will need at

least 2D/2 FLOPS

So if D = 100, we would need at least 250 ≍ 1015

computations to achieve even the coarsest resolution

This is The Curse of Dimensionality

This phenomenon cannot be defeated by some clever
approximation scheme: it says every approximation
scheme will suffer this effect
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The Remedy

Conventional thought is that most real world HD
functions do not suffer the curse

Need new Model Classes in HD

Compressibility : F is well approximated by a sum of
a small number of functions from a fixed
basis/frame/dictionary

Anisotropy/Variable Reduction: not all variables are
equally important - get rid of the weak ones

Tensor structures: variables are intertwined

Superposition: F is a composition of functions of few
variables - Hilbert’s 13-th problem

Many new approaches based on these ideas:
Manifold Learning; Laplacians on Graphs; Sparse
Grids; Sensitivity Analysis; ANOVA Decompositions;
Tensor Formats; Discrepancy; Deep Learning
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New World for Approximation

The challenge to AT is to understand whether these
new model classes actually break the curse

We need certifiable theorems given the proposed
model class and to characterize the methods of
approximation that achieve optimal performance

Let (Σn)n≥1 be the family of spaces to be used for
approximation (linear or nonlinear)

The performance of this family on K is given by

En(K)X := E(K,Σn)X := sup
F∈K

dist(F,Σn)X

To determine optimal performance on K we need to
determine its widths and entropy
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Entropy of a compact set

There is a general criteria to see whether a model class
K ⊂ X is HD friendly for approximation/computation

It is given by the Kolmogorov metric entropy of K

Given ǫ > 0: Nǫ(K)Y denotes the smallest number of
balls of radius ǫ in X we need to cover K?

Hǫ(K)Y := log2Nǫ(K)Y Kolmogorov entropy

Heuristically any approximation will need at least
Hǫ(K)Y computations to approximate all of K to
accuracy ǫ

So if the entropy of K is not reasonable this is not a
useful model class

Entropy numbers

ǫn(K)X := inf{ǫ : Hǫ(K)X ≤ n}, n ≥ 0

USC 2019 – p. 14/45



Covering
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Covering
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Kolmogorov Widths

Once we have chosen a method of approximation there
is an optimal way to measure performance through
widths of the model class K

Kolmogorov n widths for linear approximation:

dn(K)X := inf
dim(Y )=n

dist(K,Y )X , n ≥ 0

No linear method of approximation using n degrees
of freedom can perform better than dn(K)X in
approximating the elements of K
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Non-linear Widths

Most nonlinear methods of approximation can be
viewed as form of manifold approximation

There are two continuous mappings an : X → IRn and
Mn : IRn → X and the approximation to F is
An(F ) =Mn(an(F ))

Manifold width( DeVore-Howard-Micchelli) :

δn(K)X := inf
an,Mn

sup
F∈K

‖|F −Mn(an(F ))‖X

Stable widths δ∗n(K)X (Cohen-D-Petrova-Wojtaszczyk)

Here we add the requirement that the mappings a
and M are Lipschitz mappings
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Checking

Suppose you think you have the correct model class K
for your HD application

Check whether K breaks the curse by determining /
estimating its entropy or widths

Suppose you think you have the mother of all
approximation schemes for your application

Find the model classes for which the approximation
scheme performs: with rate O(n−r)

In numerical scenarios ( such as data fitting) you still
need to understand how the information (or lack of
information) effects optimal performance

You still need to build a numerical algorithm utilizing the
information you have about F
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Numerical Algorithms

Let us turn now to constructing numerical algorithms in
HD -such algorithms depend on the information we are
have about F

Setting I: Query Algorithms: We can ask questions
about F in the form of Queries

A query is the application of a linear functional to F
Examples: Point evaluation or weighted integrals

Given that F ∈ K and a query budget n - where
should we query to best reconstruct F?

Setting II: Data Assimilation: We cannot ask questions
but rather are given data in the form of some
information about F?

Given that F ∈ K and given the data how can we
best reconstruct F?
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Query Algorithms

A query algorithm prescribes where to sample F given
knowledge that F is in a certain Model Class K.

Sampling: Extract information ℓ1(F ), . . . , ℓn(F )

Reconstruction: From the drawn information
construct an approximation An(F ) ∈ Y to F

The minimal distortion of a query algorithm is

δAn
(K) := inf

An

sup
F∈K

‖F −An(F )‖Y

Optimal performance is given by the Gelfand width

dn(K)Y := inf
codim(V )=n

sup
f∈K∩V

‖f‖Y

However, often we may want to limit the types of queries

Standard Information: Query asks for the value of F
at a point: Qn is a cloud of points in HD
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Strategies for Qn

The best choice for Qn depends on the model class K

However choices for Qn generally take two forms

Random Queries:
Monte Carlo: sampling for HD integration
Compressed Sensing: for recovery of sparse
signals
Albert Cohen Theory: carefully choose the
probability measure for randomness

Deterministic Querying:
Hashing
Discrepancy theory(Quasi Monte Carlo) based on
number theory-Chinese Remainder Theorem
Commutative Algebra (Cohen-Macauley theory):
Use finite dimensional fields
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Data Assimilation

Often we do not have the luxury to query but rather are
given information about F in the form of data

Form of the Data?: We assume
wj = lj(F ), j = 1, . . . ,m, where lj are linear

functionals

Measurement map M(F ) = w := (w1, . . . , wm)

An algorithm is a mapping A : IRm 7→ X where A(M(f))
is an approximation to f ∈ X giving error

E(F,A)X := E(F,M,A)X := ‖F −A(M(F ))‖X

Optimal Recovery: Find the best algorithm A given M
and the model class K: Micchelli and Rivlin in the 1970s
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Optimal Recovery Performance

We must pay a price for the lack of full information
about F when only given data

Let

E(K,M) := inf
A

sup
F∈K

E(F,M,A)

be the optimal error in recovery of K from the given
measurement map M

We can always write E(K,M) = µ(K,M)dm(K)X
where dm is the Gelfand width

µ ≥ 1 is the price we pay for not having the optimal m
measurements for K

One can often determine µ from the null space
N := {F ∈ K : ℓj(F ) = 0}
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Examples

The remainder of this talk will discuss a few prominent
examples of HD Model Classes and HD approximation

I have to be very selective because of time
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Non-Democracy of Variables

Simplest Example: F ∈ C[0, 1]D depends on D variables
but only d are active- the d active variables are unknown
to us and may vary with F

K is the set of all such F with ‖DνF‖L∞
≤ 1, |ν| ≤ k

F (x1, . . . , xD) = g(xj1 , . . . , xjd), where g ∈ Ck

This problem and many generalizations were studied by
DeVore-Petrova-Wojtaszczyk

Σn consists of piecewise polynomials of total degree

k − 1 on a partition of [0, 1]D into n cells

The polynomial pieces have only d active variables and
the partitions depend on F

USC 2019 – p. 26/45



Optimal Algorithmss

The point clouds in Query Algorithms have two tasks:

Determine change coordinates j1, . . . , jd

Give a uniform grid with spacing h ≍ n−1/d for all d
dimensional space spanned by a possible j1, . . . , jd

Such point clouds are constructed using Hashing

A Hashing query touches every coordinate

It identifies the change coordinate and creates the
piecewise polynomial approximation after gathering
all the information

DPW Theorem: Error of algorithm on K for n queries is

δAn
(K) ≤ Cδm(K) ≤ Cn−k/d logD
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Anisotropic analyticity

I choose this next example for several reasons

D = ∞ and F is Banach space valued

Application to parametric PDEs

We know model classes via regularity theorems

F : U → X is a Banach space valued function
depending on d = ∞ variables

U the unit ball in ℓ∞(IN)

The elements z ∈ ℓ∞(IN) are bounded sequences
(z1, z2, . . .) of complex numbers

Let ρ := (ρ1, ρ2, . . .) be an increasing sequence or real
numbers with ρ1 > 1 and define the polydisc Dρ of z

satisfying |zj | ≤ ρj

Hρ the space of F analytic on Dρ and contnuous on D̄ρ
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Approximation by Polynomials

We want to approximate F in the norm

‖ · ‖ := ‖ · ‖L∞(U,X)

We approximate F by X valued polynomials

Let F := {ν = (ν1, ν2, . . .} where the entries in ν are
nonnegative integers and only a finite number of the
νj are nonzero

Given a finite set Λ ⊂ F , then
PΛ := {P : P =

∑
ν∈Λ cνz

ν

The possible sets Λ can be quite complicated and so
we restrict ourselves to lower sets which mean that
ν ∈ F and µ ≤ ν implies µ ∈ F

E(F,PΛ) := infP∈PΛ
‖F − P‖
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Model Classes

Each F ∈ Hρ has a Taylor expansion

F =
∑

ν∈F

tνz
ν , z ∈ U

where the Taylor coefficients tν are in X and satisfy
‖tν‖X ≤ ‖F‖L∞

ρ−ν

Model Classes (Bachmyar-Cohen-Migliorati):

For ρ and 0 < p ≤ ∞ we say F ∈ Bρ,p if

F has Taylor coefficients tν , ν ∈ F

F =
∑

ν∈F tνz
ν unconditionally on U

‖F‖Bρ,p
:= (ρν‖tν‖X)ν∈F <∞.

These classes are anisotropic
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Approximation Theorem for Bρ,p, 1 ≤ p ≤ ∞:

Rearrange the sequence (ρ−ν)ν∈F into decreasing
order: δnis the n-th largest term

Let Λn is the lower set of size corresponding to the n
largest of the ρ−ν

If q is the conjugate index to p: 1/p+ 1/q = 1

‖F −
∑

ν∈Λn

tνz
ν‖ ≤ (

∑

k>n

δqk)
1/q, n ≥ 0

This estimate is in a certain sense optimal

δn and Λn found by sorting

The asymptotic behavior of (δn) can be found by
counting lattice points inside simplices determined
by ρ
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Other Settings

No time to discuss in detail other important settings:

Sparsity Model Classes

Best queries are random Kashin-Gluskin

Recovery from queries: Donoho-Candes (see
Cohen-Dahmen-DeVore)

Tensor Structures

Not enough good Approximation Theory

Rank one tensors
-Bachmyar-Dahmen–DeVore-Grasedyk

-best queries given by discrepancy theory

Wolfgang Dahmen: “I can do anything but not
everything ”
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Deep Neural Networks

One of the highest profile HD approximation methods is
given by deep Neural Networks (talk of Gitta Kutyniok)

There is still not satisfactory theory to explain its
success

However we are gaining new insights and I want to give
my take on this subject

Surprisingly, I will speak about using deep Neural
Networks to approximate univariate functions

My justification is that even the univariate case is not
well enough understood and HD will be even more
complex

I am sure Gitta will be more HD
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Deep ReLU Networks

I limit my discussion to the ReLU Networks since these
are the most prominent

ReLU(y) := max(y, 0) = y+

Here is a graphic of a NN of width W = 3 and depth L

Each node is called a neuron

Each neuron at a layer ℓ in row i has an associated
function ηi,ℓ

This function takes the form

ηi.ℓ = ReLU(

W∑

j=1

ai,jηj,ℓ−1 + bi)

where the the sum is taken over all neurons of the
previous layer that feed to ηi,ℓ
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NN graphic with Width =3
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The layers

The first layer consists of the functions (aix+ bi)+

Subsequent layers are described by a matrix of size

W ×W and a vector b ∈ IRW

Output layer just a linear combinations of the functions
in layer L

So the number of parameters used to describe the NN

is n(W,L) = 2W + (L− 1)(W 2 +W ) +W ≈ LW 2

Sometimes one imposes conditions on the matrices
that greatly reduce the number of parameters

sparse matrices or convolution structure

ΥL
W is the set of functions (outputs) of such networks of

width W and depth L. This is our approximation family
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Deep Networks

In Deep Networks we fix W and let L get large

We want to understand the advantages of depth over
shallow networks and other methods of approximation

The functions in ΥL
W are Continuous pw Linear (CPwL)

So the closest classical approximation family to deep
networks are the spaces Σn, n ≥ 1 where Σn consists of
all CPwL functions with n arbitrary break points

Notice that both ΥL
W and Σn are nonlinear spaces:

when adding functions in these spaces the result is not
generally in the space

Also both spaces are examples of manifold
approximation
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Comparing Σn and ΥL
W

To make a fair comparison between these two families

of spaces we fix W and define Υn := ΥLn

W where Ln is

chosen so that Υn is determined by ≈ n parameters

Two ways to compare

How do these two spaces of functions compare
(Expressive power)?

How well do they approximate?
Approximation Classes: Given r > 0 the class
Ar((Υn), X) consists of all F ∈ X such that

dist(F,Υn)X ≤Mn−r, n ≥ 0

Smallest M is ‖F‖Ar

The following results come mainly from
Daubechies-DeVore-Foucart-Hanin-Petrova
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First Question

Theorem: Σn contained in ΥCn for n ≥ 1 with an
absolute constant, e.g. C = 12

So Υn is at least as expressive as Σn

There are many examples of functions S that are in Υn

but far from being in Σn

They are obtained by exploiting the most important
property that Υn has that Σn does not

Given functions F,G, we let F ◦G := F (G) be the
composition of these two functions

F ◦n denotes the n fold composition of F with itself

If S ∈ Υn and T ∈ Υm then S ◦ T is in Υn+m

On the other hand, If S ∈ Σn and T ∈ Σm then the best
we can say is S ◦ T is in Σnm
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Examples

Simplest Example the hat function

n fold composition H◦n is a saw tooth with 2n hats

Piecewise self similar functions

If S is in Υk with S(0) = S(1) = 0

I1, . . . , Im is a partitioning of [0, 1] into m intervals

any function which is a scaled version of S on each
of these intervals is in Υk+6m

We call S a pattern
So we can replicate patterns cheaply
Such a function is in Σkm

More generally we can create bases and redundant
frames of CPwL
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Hat Function
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Composition
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The Approximation Classes

I take X = C[0, 1] and ‖ · ‖ := ‖ · ‖X

General Principal

Let φk ∈ Υk with ‖φk‖ = 1

(αk) ∈ ℓ1∑
k≥n |αk| ≤Mn−2r

Then F :=
∑∞

k=1 αkφk is in Ar((Υn), X)

Same property holds with (Υn) replaced by (Σn)

The General Principle can be used to construct may
interesting F in Ar((Υn), X)

The Tagoki Function: FT :=
∑∞

k=1 2
−kH◦k

This functiont is nowhere differentiable
It can be approximated to exponential accuracy: It
is in all Ar((Υn), X), r > 0
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Many other examples

Dynamical systems, iterated function systems, fractals,
refinement equations give functions that can be
approximated with exponential accuracy but the
functions are not smooth

On the other side of the spectrum

All analytic functions can be approximated with
exponential accuracy

This uses the fact that all power function xk,
k = 1, 2, . . . can be approximated to exponential
accuracy

USC 2019 – p. 44/45



Other surprizes

Yarotsky: Any Lip 1 function can be approximated to

accuracy O((n log n)−1)

The appearance of the log is a surprise

This result generalizes to many other classical function
spaces

What is going on?

The manifold width of Lip 1 is ≥ Cn−1

Also the entropy numbers of the class Lip 1 are
≥ C/n with an absolute C

This means the mapping of F to its approximant
cannot be continuous

This cautions us to be careful about the Stability of
Algorithms
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