High Dimensional Approximation Ronald DeVore

Texas A& M University

Why High Dimension?

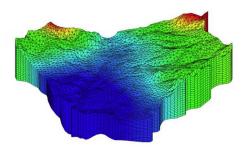
- Some of the most pressing scientific problems challenge our computational ability
 - Atmospheric modeling: predicting climate change
 - Monitoring threat activities
 - Contaminant transport
 - Optimal engineering design
 - Medical diagnostics
 - Modeling the internet
 - Option pricing, bond valuation

9

USC 2019 - p. 2/45

Your Favorite Application

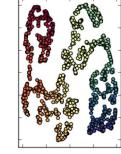
MRI



Groundwater Modeling



Global Temperatures



Manifold Learning

The HD Challenge

- One common characteristic of these problems is they involve functions with many variables or parameters
- Mathematically this means we are faced with numerically approximating a high dimensional function
 - $F: [0,1]^D \to X$
 - X a Banach space (often just \mathbb{R} or \mathbb{R}^m)
 - D large and possibly infinite
 - Typical Computational Tasks
 - Create an approximation \hat{F} to F
 - Evaluate some quantity of interest: Q(F)
 - $\mathbf{P} \ \mathbf{Q}$ is some linear or nonlinear functional:
 - $\cdot Q(F)$ is a high dimensional integral of F
 - $\cdot Q(F)$ is the max or min of F

USC 2019 – p. 4/45

Approximation Theory

- The last 50 years have been Golden Years in AT
- We briefly describe the AT setting
 - Prescribe a way to measure error: a norm $\|\cdot\|_X$
 - Specify the type of approximation, i.e., the sets of functions X_n , $n \ge 0$, which will be used to approximate
- There are typically two types of approximation
 - Linear Approximation: X_n is a linear space of dimension n in X
 - Non-Linear Approximation: X_n is a nonlinear set depending on n parameters (n degrees of freedom)
- Given F, we have the error of approximation

 $E_n(F)_X := E(F, X_n)_X := \inf_{g \in X_n} \|F - g\|_X$

USC 2019 – p. 5/45

The Performance of $(X_n)_{n \ge 0}$

- There are several ways to evaluate the performance of (X_n) and compare different methods
 - Checking performance on one function F makes no sense
 - For any compact set $K \subset X$ we define

 $E_n(K)_X := E(K, X_n)_X := \sup_{F \in K} E(F, X_n)_X, \quad n \ge 0$

• Approximation Class: For each r > 0 define $\mathcal{A}^r((X_n)_{n \ge 0}, X)$ as the set of all $F \in X$ such that

$$||f||_{\mathcal{A}^r} := \sup_{n \ge 0} E_n(F) < \infty$$

USC 2019 – p. 6/45

Linear Methods of Approximation

- Simplest Example: X = C[0, 1]
 - X_n algebraic polynomials of degree n 1, i.e., $P = \sum_{k=0}^{n-1} c_k x^k$
 - X_n p.w. polynomials of fixed degree k on equidistant partition of [0, 1]
 - $X_n = \operatorname{span}(\phi_1, \dots, \phi_n)$ with $\phi_1, \dots, \phi_n \in X$ fixed and linearly independent
 - Splines, Fourier, Wavelets

Non- Linear Methods

- Simplest Example: X = C[0, 1]
- Σ_n nonlinear set
 - Piecewise Polynomial Approximation of Degree k:
 - $g \in_n$ is a p.p. on a partition with n cells
 - \bullet the partition can be chosen depending on F
 - n term approximation from a dictionary $\mathcal{D} = \{\psi_1, \dots, \psi_N\}$
 - \checkmark \mathcal{D} usually has structure: frame or basis
 - $\Sigma_n := \{g = \sum_{k \in \Lambda} c_k \psi_k : \#\Lambda = n\}$
 - Manifold Approximation:
 - Two mappings: $a: X \to \mathbb{R}^n$ and $M: \mathbb{R}^n \to X$
 - $\Sigma_n := \{ M(z) : z \in \mathbb{R}^n \}$
 - The points M(z) live on a manifold

Typical Approximation Questions

- How fast does $E_n(F)$ tend to zero?
 - This requires some information about F
 - F is in some model class K
 - K is a compact set in X which quantifies what we know about F from the application
 - For example a regularity theorem in PDEs
- Have we chosen the best method of approximation?
 - Best over all linear methods ?
 - Best over all nonlinear methods?
 - This is answered by concepts like widths and entropy
- Can we realize the approximation numerically?
 - This requires information about *F* through data or queries

Model Classes

Classical model classes K based on smoothness

- *F* has smoothness (of order *s*)
- F is in C^s , Sobolev space $W^s(L_p)$, Besov space
- AT says *n* computations can only capture *F* to accuracy $C(D,s)n^{-s/D}$ where *D* is the number of variables
- If D is large than s must also be very large for any reasonable accuracy: Curse of Dimensionality
- But we have no control over s which is inherent in the real world problem
- So conventional assumptions on F and conventional numerical methods will not work
- Also beware that C(D, s) grows exponentially with D

USC 2019 – p. 10/45

Example (Novak-Wozniakowski)

- To drive home the debilitating effect of high dimensions consider the following example $\Omega := [0,1]^D, \quad X = I\!\!R, \quad \mathcal{K} := \{F : \|D^{\nu}F\|_{L_{\infty}} \leq 1, \forall \nu\}$
- Any algorithm which computes for each $F \in \mathcal{K}$ an approximation \hat{F} to accuracy 1/2 in L_{∞} will need at least 2^{D/2} FLOPS
- So if D = 100, we would need at least $2^{50} \simeq 10^{15}$ computations to achieve even the coarsest resolution
- This is The Curse of Dimensionality
- This phenomenon cannot be defeated by some clever approximation scheme: it says every approximation scheme will suffer this effect

The Remedy

- Conventional thought is that most real world HD functions do not suffer the curse
- Need new Model Classes in HD
 - Compressibility : F is well approximated by a sum of a small number of functions from a fixed basis/frame/dictionary
 - Anisotropy/Variable Reduction: not all variables are equally important - get rid of the weak ones
 - Tensor structures: variables are intertwined
 - Superposition: F is a composition of functions of few variables - Hilbert's 13-th problem
 - Many new approaches based on these ideas: Manifold Learning; Laplacians on Graphs; Sparse Grids; Sensitivity Analysis; ANOVA Decompositions; Tensor Formats; Discrepancy; Deep Learning, 12/45

New World for Approximation

- The challenge to AT is to understand whether these new model classes actually break the curse
- We need certifiable theorems given the proposed model class and to characterize the methods of approximation that achieve optimal performance
- Let $(\sum_n)_{n\geq 1}$ be the family of spaces to be used for approximation (linear or nonlinear)
- The performance of this family on K is given by

 $E_n(K)_X := E(K, \Sigma_n)_X := \sup_{F \in K} \operatorname{dist}(F, \Sigma_n)_X$

To determine optimal performance on K we need to determine its widths and entropy

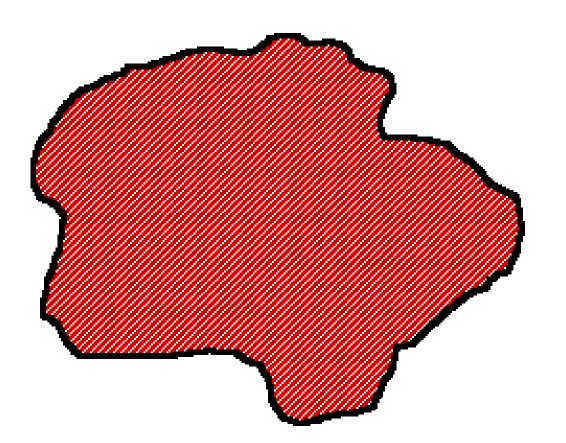
USC 2019 – p. 13/45

Entropy of a compact set

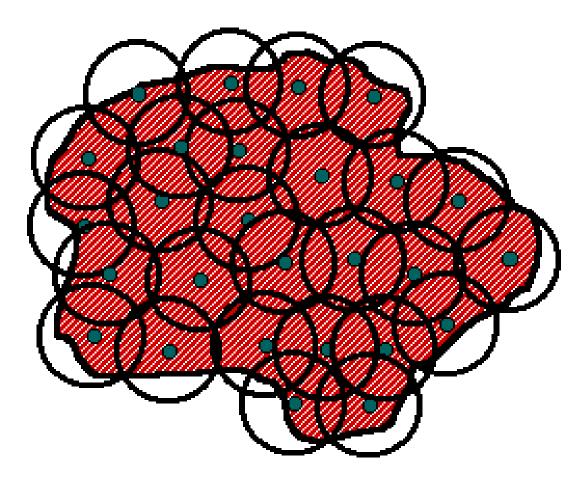
- There is a general criteria to see whether a model class $K \subset X$ is HD friendly for approximation/computation
- It is given by the Kolmogorov metric entropy of K
 - Given ε > 0: N_ε(K)_Y denotes the smallest number of balls of radius ε in X we need to cover K?
 - $H_{\epsilon}(K)_Y := \log_2 N_{\epsilon}(K)_Y$ Kolmogorov entropy
 - Heuristically any approximation will need at least $H_{\epsilon}(\mathcal{K})_{Y}$ computations to approximate all of K to accuracy ϵ
 - So if the entropy of ${\mathcal K}$ is not reasonable this is not a useful model class
 - Entropy numbers

 $\epsilon_n(K)_X := \inf\{\epsilon : H_\epsilon(K)_X \le n\}, \quad n \ge 0$

USC 2019 – p. 14/45



USC 2019 – p. 15/45



USC 2019 – p. 16/45

Kolmogorov Widths

- Once we have chosen a method of approximation there is an optimal way to measure performance through widths of the model class K
- Solution: Kolmogorov n widths for linear approximation:

$$d_n(K)_X := \inf_{\dim(Y)=n} \operatorname{dist}(K,Y)_X, \quad n \ge 0$$

• No linear method of approximation using n degrees of freedom can perform better than $d_n(K)_X$ in approximating the elements of K

USC 2019 – p. 17/45

Non-linear Widths

- Most nonlinear methods of approximation can be viewed as form of manifold approximation
- There are two continuous mappings $a_n : X \to \mathbb{R}^n$ and $M_n : \mathbb{R}^n \to X$ and the approximation to F is $A_n(F) = M_n(a_n(F))$
- Manifold width(DeVore-Howard-Micchelli) :

$$\delta_n(K)_X := \inf_{a_n, M_n} \sup_{F \in K} \||F - M_n(a_n(F))\|_X$$

• Stable widths $\delta_n^*(K)_X$ (Cohen-D-Petrova-Wojtaszczyk)

 Here we add the requirement that the mappings a and M are Lipschitz mappings

Checking

- Suppose you think you have the correct model class K for your HD application
 - Check whether K breaks the curse by determining / estimating its entropy or widths
- Suppose you think you have the mother of all approximation schemes for your application
 - Find the model classes for which the approximation scheme performs: with rate $O(n^{-r})$
- In numerical scenarios (such as data fitting) you still need to understand how the information (or lack of information) effects optimal performance
- You still need to build a numerical algorithm utilizing the information you have about F

Numerical Algorithms

- Let us turn now to constructing numerical algorithms in HD -such algorithms depend on the information we are have about F
- Setting I: Query Algorithms: We can ask questions about *F* in the form of Queries
 - A query is the application of a linear functional to F
 - Examples: Point evaluation or weighted integrals
 - Given that $F \in \mathcal{K}$ and a query budget n where should we query to best reconstruct F?
- Setting II: Data Assimilation: We cannot ask questions but rather are given data in the form of some information about *F*?
 - Given that $F \in \mathcal{K}$ and given the data how can we best reconstruct F?

Query Algorithms

- A query algorithm prescribes where to sample F given knowledge that F is in a certain Model Class K.
 - Sampling: Extract information $\ell_1(F), \ldots, \ell_n(F)$
 - Reconstruction: From the drawn information construct an approximation $A_n(F) \in Y$ to F
- The minimal distortion of a query algorithm is $\delta_{A_n}(K) := \inf_{A_n} \sup_{F \in \mathcal{K}} \|F - A_n(F)\|_Y$
- Optimal performance is given by the Gelfand width $d^{n}(K)_{Y} := \inf_{\substack{\text{codim}(V)=n}} \sup_{f \in \mathcal{K} \cap V} \|f\|_{Y}$

at a point: Q_n is a cloud of points in HD

However, often we may want to limit the types of queries
 Standard Information: Query asks for the value of F

USC 2019 – p. 21/45

Strategies for Q_n

- The best choice for Q_n depends on the model class K
- However choices for Q_n generally take two forms
 - Random Queries:
 - Monte Carlo: sampling for HD integration
 - Compressed Sensing: for recovery of sparse signals
 - Albert Cohen Theory: carefully choose the probability measure for randomness
 - Deterministic Querying:
 - Hashing
 - Discrepancy theory(Quasi Monte Carlo) based on number theory-Chinese Remainder Theorem
 - Commutative Algebra (Cohen-Macauley theory): Use finite dimensional fields

USC 2019 – p. 22/45

Data Assimilation

- Often we do not have the luxury to query but rather are given information about *F* in the form of data
 - Form of the Data?: We assume

 $w_j = l_j(F), \quad j = 1, \dots, m$, where l_j are linear functionals

• Measurement map $M(F) = w := (w_1, \ldots, w_m)$

• An algorithm is a mapping $A : \mathbb{R}^m \mapsto X$ where A(M(f)) is an approximation to $f \in X$ giving error

 $E(F, A)_X := E(F, M, A)_X := ||F - A(M(F))||_X$

• Optimal Recovery: Find the best algorithm A given M and the model class K: Micchelli and Rivlin in the 1970s

USC 2019 – p. 23/45

Optimal Recovery Performance

We must pay a price for the lack of full information about F when only given data

🥒 Let

$$E(K, M) := \inf_{A} \sup_{F \in K} E(F, M, A)$$

be the optimal error in recovery of K from the given measurement map M

- We can always write $E(K, M) = \mu(K, M)d^m(K)_X$ where d^m is the Gelfand width
- $\mu \geq 1$ is the price we pay for not having the optimal m measurements for K
- One can often determine μ from the null space $\mathcal{N} := \{F \in K : \ell_j(F) = 0\}$

USC 2019 – p. 24/45

Examples

- The remainder of this talk will discuss a few prominent examples of HD Model Classes and HD approximation
- I have to be very selective because of time

Non-Democracy of Variables

- Simplest Example: $F \in C[0, 1]^D$ depends on D variables but only d are active- the d active variables are unknown to us and may vary with F
- K is the set of all such F with $||D^{\nu}F||_{L_{\infty}} \leq 1$, $|\nu| \leq k$

• $F(x_1, ..., x_D) = g(x_{j_1}, ..., x_{j_d})$, where $g \in C^k$

- This problem and many generalizations were studied by DeVore-Petrova-Wojtaszczyk
- \sum_{n} consists of piecewise polynomials of total degree k-1 on a partition of $[0,1]^{D}$ into n cells
- The polynomial pieces have only d active variables and the partitions depend on F

Optimal Algorithmss

The point clouds in Query Algorithms have two tasks:

- Determine change coordinates j_1, \ldots, j_d
- Give a uniform grid with spacing $h \simeq n^{-1/d}$ for all d dimensional space spanned by a possible j_1, \ldots, j_d
- Such point clouds are constructed using Hashing

A Hashing query touches every coordinate

 It identifies the change coordinate and creates the piecewise polynomial approximation after gathering all the information

DPW Theorem: Error of algorithm on K for n queries is

 $\delta_{A_n}(K) \le C\delta^m(K) \le Cn^{-k/d} \log D$

USC 2019 – p. 27/45

Anisotropic analyticity

I choose this next example for several reasons

- $D = \infty$ and F is Banach space valued
- Application to parametric PDEs
- We know model classes via regularity theorems
- $F: U \to X$ is a Banach space valued function depending on $d = \infty$ variables
 - U the unit ball in $\ell_{\infty}(I\!\!N)$
 - The elements $z \in \ell_{\infty}(\mathbb{I}N)$ are bounded sequences $(z_1, z_2, ...)$ of complex numbers
- Let $\rho := (\rho_1, \rho_2, ...)$ be an increasing sequence or real numbers with $\rho_1 > 1$ and define the polydisc D_{ρ} of z satisfying $|z_j| \le \rho_j$
- $H_{
 ho}$ the space of F analytic on $D_{
 ho}$ and contnuous on $\overline{D}_{
 ho}$ –

USC 2019 – p. 28/45

Approximation by Polynomials

• We want to approximate F in the norm

 $\|\cdot\| := \|\cdot\|_{L_{\infty}(U,X)}$

- We approximate F by X valued polynomials
 - Let $\mathcal{F} := \{\nu = (\nu_1, \nu_2, ...\}$ where the entries in ν are nonnegative integers and only a finite number of the ν_j are nonzero
 - Given a finite set $\Lambda \subset \mathcal{F}$, then $\mathcal{P}_{\Lambda} := \{P : P = \sum_{\nu \in \Lambda} c_{\nu} z^{\nu}$
 - The possible sets Λ can be quite complicated and so we restrict ourselves to lower sets which mean that $\nu \in \mathcal{F}$ and $\mu \leq \nu$ implies $\mu \in \mathcal{F}$

•
$$E(F, \mathcal{P}_{\Lambda}) := \inf_{P \in \mathcal{P}_{\Lambda}} ||F - P|$$

USC 2019 – p. 29/45

Model Classes

• Each $F \in H_{\rho}$ has a Taylor expansion

$$F = \sum_{\nu \in \mathcal{F}} t_{\nu} z^{\nu}, \quad z \in U$$

where the Taylor coefficients t_{ν} are in *X* and satisfy $||t_{\nu}||_X \leq ||F||_{L_{\infty}} \rho^{-\nu}$

- Model Classes (Bachmyar-Cohen-Migliorati):
- For ho and $0 we say <math>F \in B_{
 ho,p}$ if
 - *F* has Taylor coefficients $t_{\nu}, \nu \in \mathcal{F}$
 - $F = \sum_{\nu \in \mathcal{F}} t_{\nu} z^{\nu}$ unconditionally on U
 - $||F||_{B_{\rho,p}} := (\rho^{\nu} ||t_{\nu}||_X)_{\nu \in \mathcal{F}} < \infty.$
- These classes are anisotropic

- Approximation Theorem for $B_{\rho,p}$, $1 \le p \le \infty$:
 - Rearrange the sequence $(\rho^{-\nu})_{\nu\in\mathcal{F}}$ into decreasing order: δ_n is the *n*-th largest term
 - Let Λ_n is the lower set of size corresponding to the n largest of the $\rho^{-\nu}$
 - If q is the conjugate index to p: 1/p + 1/q = 1

$$\|F - \sum_{\nu \in \Lambda_n} t_{\nu} z^{\nu}\| \le (\sum_{k>n} \delta_k^q)^{1/q}, \quad n \ge 0$$

- This estimate is in a certain sense optimal
- δ_n and Λ_n found by sorting
- The asymptotic behavior of (δ_n) can be found by counting lattice points inside simplices determined by ρ

Other Settings

- No time to discuss in detail other important settings:
- Sparsity Model Classes
 - Best queries are random Kashin-Gluskin
 - Recovery from queries: Donoho-Candes (see Cohen-Dahmen-DeVore)
- Tensor Structures
- Not enough good Approximation Theory
- Rank one tensors -Bachmyar-Dahmen–DeVore-Grasedyk
- -best queries given by discrepancy theory
- Wolfgang Dahmen: "I can do anything but not everything "

USC 2019 – p. 32/45

Deep Neural Networks

- One of the highest profile HD approximation methods is given by deep Neural Networks (talk of Gitta Kutyniok)
- There is still not satisfactory theory to explain its success
- However we are gaining new insights and I want to give my take on this subject
- Surprisingly, I will speak about using deep Neural Networks to approximate univariate functions
- My justification is that even the univariate case is not well enough understood and HD will be even more complex
- I am sure Gitta will be more HD

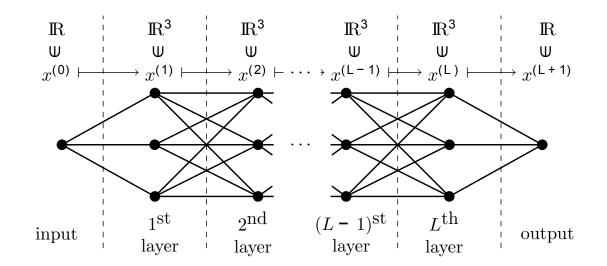
Deep ReLU Networks

- I limit my discussion to the ReLU Networks since these are the most prominent
- $ReLU(y) := \max(y, 0) = y_+$
- Here is a graphic of a NN of width W = 3 and depth L
- Each node is called a neuron
 - Each neuron at a layer ℓ in row i has an associated function $\eta_{i,\ell}$
 - This function takes the form

$$\eta_{i,\ell} = ReLU(\sum_{j=1}^{W} a_{i,j}\eta_{j,\ell-1} + b_i)$$

where the sum is taken over all neurons of the previous layer that feed to $\eta_{i,\ell}$

NN graphic with Width =3



The layers

- The first layer consists of the functions $(a_i x + b_i)_+$
- Subsequent layers are described by a matrix of size $W \times W$ and a vector $b \in \mathbb{R}^{W}$
- Output layer just a linear combinations of the functions in layer <u>L</u>
- So the number of parameters used to describe the NN is $n(W,L) = 2W + (L-1)(W^2 + W) + W \approx LW^2$
- Sometimes one imposes conditions on the matrices that greatly reduce the number of parameters
 - sparse matrices or convolution structure
- Υ_W^L is the set of functions (outputs) of such networks of width W and depth L. This is our approximation family

Deep Networks

- In Deep Networks we fix W and let L get large
- We want to understand the advantages of depth over shallow networks and other methods of approximation
- The functions in Υ_W^L are Continuous pw Linear (CPwL)
- So the closest classical approximation family to deep networks are the spaces Σ_n , $n \ge 1$ where Σ_n consists of all CPwL functions with n arbitrary break points
- Notice that both Υ_W^L and Σ_n are nonlinear spaces: when adding functions in these spaces the result is not generally in the space
- Also both spaces are examples of manifold approximation

Comparing Σ_n and Υ_W^L

- To make a fair comparison between these two families of spaces we fix W and define $\Upsilon_n := \Upsilon_W^{L_n}$ where L_n is chosen so that Υ_n is determined by $\approx n$ parameters
- Two ways to compare
 - How do these two spaces of functions compare (Expressive power)?
 - How well do they approximate?
 - Approximation Classes: Given r > 0 the class $\mathcal{A}^r((\Upsilon_n), X)$ consists of all $F \in X$ such that

 $\operatorname{dist}(F,\Upsilon_n)_X \le Mn^{-r}, \quad n \ge 0$

- Smallest M is $||F||_{\mathcal{A}^r}$
- The following results come mainly from Daubechies-DeVore-Foucart-Hanin-Petrova

USC 2019 – p. 38/45

First Question

- Theorem: \sum_n contained in Υ_{Cn} for $n \ge 1$ with an absolute constant, e.g. C = 12
 - So Υ_n is at least as expressive as Σ_n
- There are many examples of functions S that are in Υ_n but far from being in Σ_n
- They are obtained by exploiting the most important property that Υ_n has that Σ_n does not
 - Given functions F, G, we let $F \circ G := F(G)$ be the composition of these two functions
 - $F^{\circ n}$ denotes the *n* fold composition of *F* with itself
- If $S \in \Upsilon_n$ and $T \in \Upsilon_m$ then $S \circ T$ is in Υ_{n+m}
- On the other hand, If $S \in \Sigma_n$ and $T \in \Sigma_m$ then the best we can say is $S \circ T$ is in Σ_{nm}

USC 2019 – p. 39/45

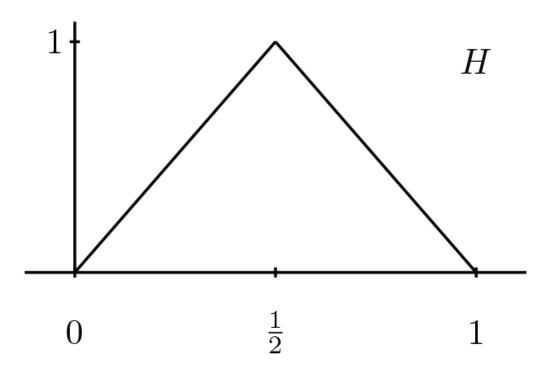
Examples

Simplest Example the hat function

- *n* fold composition $H^{\circ n}$ is a saw tooth with 2^n hats
- Piecewise self similar functions
 - If S is in Υ_k with S(0) = S(1) = 0
 - I_1, \ldots, I_m is a partitioning of [0, 1] into *m* intervals
 - any function which is a scaled version of S on each of these intervals is in Υ_{k+6m}
 - We call S a pattern
 - So we can replicate patterns cheaply
 - Such a function is in Σ_{km}
 - More generally we can create bases and redundant frames of CPwL

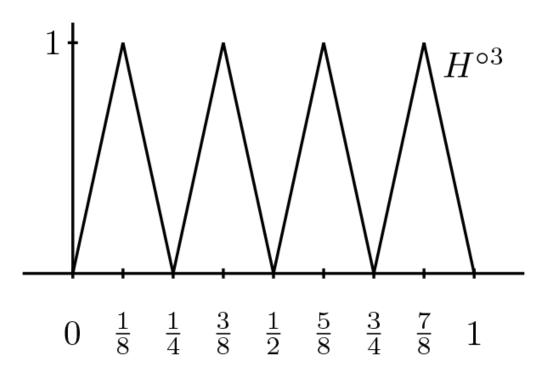
USC 2019 – p. 40/45

Hat Function



USC 2019 – p. 41/45

Composition



USC 2019 – p. 42/45

The Approximation Classes

- I take X = C[0, 1] and $\| \cdot \| := \| \cdot \|_X$
- General Principal
 - Let $\phi_k \in \Upsilon_k$ with $\|\phi_k\| = 1$
 - $(\alpha_k) \in \ell_1$
 - $\sum_{k \ge n} |\alpha_k| \le M n^{-2r}$
 - Then $F := \sum_{k=1}^{\infty} \alpha_k \phi_k$ is in $\mathcal{A}^r((\Upsilon_n), X)$
 - Same property holds with (Υ_n) replaced by (Σ_n)
- The General Principle can be used to construct may interesting F in $\mathcal{A}^r((\Upsilon_n), X)$
 - The Tagoki Function: $F_T := \sum_{k=1}^{\infty} 2^{-k} H^{\circ k}$
 - This functiont is nowhere differentiable
 - It can be approximated to exponential accuracy: It is in all $\mathcal{A}^r((\Upsilon_n), X)$, r > 0

USC 2019 – p. 43/45

Many other examples

- Dynamical systems, iterated function systems, fractals, refinement equations give functions that can be approximated with exponential accuracy but the functions are not smooth
- On the other side of the spectrum
 - All analytic functions can be approximated with exponential accuracy
 - This uses the fact that all power function x^k , k = 1, 2, ... can be approximated to exponential accuracy

Other surprizes

- Yarotsky: Any Lip 1 function can be approximated to accuracy $O((n \log n)^{-1})$
- The appearance of the log is a surprise
- This result generalizes to many other classical function spaces
- What is going on?
 - The manifold width of Lip 1 is $\geq Cn^{-1}$
 - Also the entropy numbers of the class Lip 1 are $\geq C/n$ with an absolute C
 - This means the mapping of F to its approximant cannot be continuous
 - This cautions us to be careful about the Stability of Algorithms

USC 2019 – p. 45/45