#### High Dimensional Approximation Ronald DeVore

Texas A& M University



# **Why High Dimension?**

- Some of the most pressing scientific problems challenge our computational ability
  - Atmospheric modeling: predicting climate change
  - Monitoring threat activities
  - Contaminant transport
  - Optimal engineering design
  - Medical diagnostics
  - Modeling the internet
  - Option pricing, bond valuation

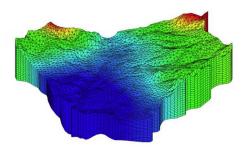
**9** 

#### USC 2019 - p. 2/45

### **Your Favorite Application**



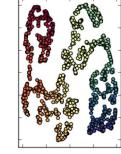
MRI



Groundwater Modeling



**Global Temperatures** 



Manifold Learning



# **The HD Challenge**

- One common characteristic of these problems is they involve functions with many variables or parameters
- Mathematically this means we are faced with numerically approximating a high dimensional function
  - $F: [0,1]^D \to X$
  - X a Banach space (often just  $\mathbb{R}$  or  $\mathbb{R}^m$ )
  - D large and possibly infinite
  - Typical Computational Tasks
    - Create an approximation  $\hat{F}$  to F
    - Evaluate some quantity of interest: Q(F)
    - $\mathbf{P} \ \mathbf{Q}$  is some linear or nonlinear functional:
      - $\cdot Q(F)$  is a high dimensional integral of F
      - $\cdot Q(F)$  is the max or min of F

#### USC 2019 – p. 4/45

# **Approximation Theory**

- The last 50 years have been Golden Years in AT
- We briefly describe the AT setting
  - Prescribe a way to measure error: a norm  $\|\cdot\|_X$
  - Specify the type of approximation, i.e., the sets of functions  $X_n$ ,  $n \ge 0$ , which will be used to approximate
- There are typically two types of approximation
  - Linear Approximation:  $X_n$  is a linear space of dimension n in X
  - Non-Linear Approximation:  $X_n$  is a nonlinear set depending on n parameters (n degrees of freedom)
- Given F, we have the error of approximation

 $E_n(F)_X := E(F, X_n)_X := \inf_{g \in X_n} \|F - g\|_X$ 

USC 2019 – p. 5/45

# **The Performance of** $(X_n)_{n \ge 0}$

- There are several ways to evaluate the performance of  $(X_n)$  and compare different methods
  - Checking performance on one function F makes no sense
  - For any compact set  $K \subset X$  we define

 $E_n(K)_X := E(K, X_n)_X := \sup_{F \in K} E(F, X_n)_X, \quad n \ge 0$ 

• Approximation Class: For each r > 0 define  $\mathcal{A}^r((X_n)_{n \ge 0}, X)$  as the set of all  $F \in X$  such that

$$||f||_{\mathcal{A}^r} := \sup_{n \ge 0} E_n(F) < \infty$$

USC 2019 – p. 6/45

## **Linear Methods of Approximation**

- Simplest Example: X = C[0, 1]
  - $X_n$  algebraic polynomials of degree n 1, i.e.,  $P = \sum_{k=0}^{n-1} c_k x^k$
  - $X_n$  p.w. polynomials of fixed degree k on equidistant partition of [0, 1]
  - $X_n = \operatorname{span}(\phi_1, \dots, \phi_n)$  with  $\phi_1, \dots, \phi_n \in X$  fixed and linearly independent
  - Splines, Fourier, Wavelets

### **Non- Linear Methods**

- Simplest Example: X = C[0, 1]
- $\Sigma_n$  nonlinear set
  - Piecewise Polynomial Approximation of Degree k:
    - $g \in_n$  is a p.p. on a partition with n cells
    - $\bullet$  the partition can be chosen depending on F
  - n term approximation from a dictionary $\mathcal{D} = \{\psi_1, \dots, \psi_N\}$ 
    - $\checkmark$   $\mathcal{D}$  usually has structure: frame or basis
    - $\Sigma_n := \{g = \sum_{k \in \Lambda} c_k \psi_k : \#\Lambda = n\}$
  - Manifold Approximation:
    - Two mappings:  $a: X \to \mathbb{R}^n$  and  $M: \mathbb{R}^n \to X$
    - $\Sigma_n := \{ M(z) : z \in \mathbb{R}^n \}$
    - The points M(z) live on a manifold

# **Typical Approximation Questions**

- How fast does  $E_n(F)$  tend to zero?
  - This requires some information about F
  - F is in some model class K
  - K is a compact set in X which quantifies what we know about F from the application
  - For example a regularity theorem in PDEs
- Have we chosen the best method of approximation?
  - Best over all linear methods ?
  - Best over all nonlinear methods?
  - This is answered by concepts like widths and entropy
- Can we realize the approximation numerically?
  - This requires information about *F* through data or queries

### **Model Classes**

Classical model classes K based on smoothness

- *F* has smoothness (of order *s*)
- F is in  $C^s$ , Sobolev space  $W^s(L_p)$ , Besov space
- AT says *n* computations can only capture *F* to accuracy  $C(D,s)n^{-s/D}$  where *D* is the number of variables
- If D is large than s must also be very large for any reasonable accuracy: Curse of Dimensionality
- But we have no control over s which is inherent in the real world problem
- So conventional assumptions on F and conventional numerical methods will not work
- Also beware that C(D, s) grows exponentially with D

#### USC 2019 – p. 10/45

## Example (Novak-Wozniakowski)

- To drive home the debilitating effect of high dimensions consider the following example  $\Omega := [0,1]^D, \quad X = I\!\!R, \quad \mathcal{K} := \{F : \|D^{\nu}F\|_{L_{\infty}} \leq 1, \forall \nu\}$
- Any algorithm which computes for each  $F \in \mathcal{K}$  an approximation  $\hat{F}$  to accuracy 1/2 in  $L_{\infty}$  will need at least 2<sup>D/2</sup> FLOPS
- So if D = 100, we would need at least  $2^{50} \simeq 10^{15}$  computations to achieve even the coarsest resolution
- This is The Curse of Dimensionality
- This phenomenon cannot be defeated by some clever approximation scheme: it says every approximation scheme will suffer this effect

## **The Remedy**

- Conventional thought is that most real world HD functions do not suffer the curse
- Need new Model Classes in HD
  - Compressibility : F is well approximated by a sum of a small number of functions from a fixed basis/frame/dictionary
  - Anisotropy/Variable Reduction: not all variables are equally important - get rid of the weak ones
  - Tensor structures: variables are intertwined
  - Superposition: F is a composition of functions of few variables - Hilbert's 13-th problem
  - Many new approaches based on these ideas: Manifold Learning; Laplacians on Graphs; Sparse Grids; Sensitivity Analysis; ANOVA Decompositions; Tensor Formats; Discrepancy; Deep Learning, 12/45

# **New World for Approximation**

- The challenge to AT is to understand whether these new model classes actually break the curse
- We need certifiable theorems given the proposed model class and to characterize the methods of approximation that achieve optimal performance
- Let  $(\sum_n)_{n\geq 1}$  be the family of spaces to be used for approximation (linear or nonlinear)
- The performance of this family on K is given by

 $E_n(K)_X := E(K, \Sigma_n)_X := \sup_{F \in K} \operatorname{dist}(F, \Sigma_n)_X$ 

To determine optimal performance on K we need to determine its widths and entropy

USC 2019 – p. 13/45

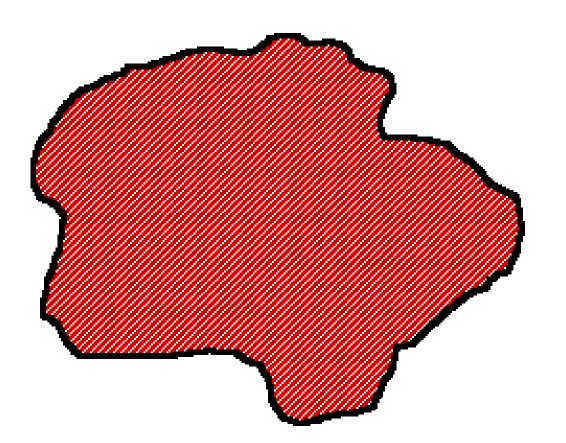
# **Entropy of a compact set**

- There is a general criteria to see whether a model class  $K \subset X$  is HD friendly for approximation/computation
- It is given by the Kolmogorov metric entropy of K
  - Given ε > 0: N<sub>ε</sub>(K)<sub>Y</sub> denotes the smallest number of balls of radius ε in X we need to cover K?
  - $H_{\epsilon}(K)_Y := \log_2 N_{\epsilon}(K)_Y$  Kolmogorov entropy
  - Heuristically any approximation will need at least  $H_{\epsilon}(\mathcal{K})_{Y}$  computations to approximate all of K to accuracy  $\epsilon$
  - So if the entropy of  ${\mathcal K}$  is not reasonable this is not a useful model class
  - Entropy numbers

 $\epsilon_n(K)_X := \inf\{\epsilon : H_\epsilon(K)_X \le n\}, \quad n \ge 0$ 

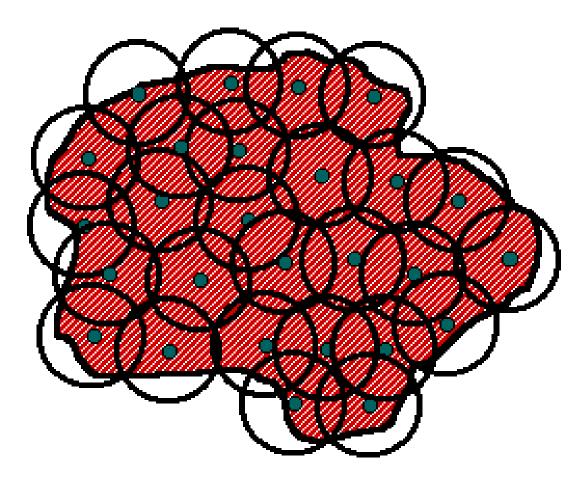
USC 2019 – p. 14/45





USC 2019 – p. 15/45





USC 2019 – p. 16/45

# **Kolmogorov Widths**

- Once we have chosen a method of approximation there is an optimal way to measure performance through widths of the model class K
- Solution: Kolmogorov n widths for linear approximation:

$$d_n(K)_X := \inf_{\dim(Y)=n} \operatorname{dist}(K,Y)_X, \quad n \ge 0$$

• No linear method of approximation using n degrees of freedom can perform better than  $d_n(K)_X$  in approximating the elements of K

#### USC 2019 – p. 17/45

### **Non-linear Widths**

- Most nonlinear methods of approximation can be viewed as form of manifold approximation
- There are two continuous mappings  $a_n : X \to \mathbb{R}^n$  and  $M_n : \mathbb{R}^n \to X$  and the approximation to F is  $A_n(F) = M_n(a_n(F))$
- Manifold width( DeVore-Howard-Micchelli) :

$$\delta_n(K)_X := \inf_{a_n, M_n} \sup_{F \in K} \||F - M_n(a_n(F))\|_X$$

• Stable widths  $\delta_n^*(K)_X$  (Cohen-D-Petrova-Wojtaszczyk)

 Here we add the requirement that the mappings a and M are Lipschitz mappings

# Checking

- Suppose you think you have the correct model class K for your HD application
  - Check whether K breaks the curse by determining / estimating its entropy or widths
- Suppose you think you have the mother of all approximation schemes for your application
  - Find the model classes for which the approximation scheme performs: with rate  $O(n^{-r})$
- In numerical scenarios (such as data fitting) you still need to understand how the information (or lack of information) effects optimal performance
- You still need to build a numerical algorithm utilizing the information you have about F

# **Numerical Algorithms**

- Let us turn now to constructing numerical algorithms in HD -such algorithms depend on the information we are have about F
- Setting I: Query Algorithms: We can ask questions about *F* in the form of Queries
  - A query is the application of a linear functional to F
    - Examples: Point evaluation or weighted integrals
  - Given that  $F \in \mathcal{K}$  and a query budget n where should we query to best reconstruct F?
- Setting II: Data Assimilation: We cannot ask questions but rather are given data in the form of some information about *F*?
  - Given that  $F \in \mathcal{K}$  and given the data how can we best reconstruct F?

# **Query Algorithms**

- A query algorithm prescribes where to sample F given knowledge that F is in a certain Model Class K.
  - Sampling: Extract information  $\ell_1(F), \ldots, \ell_n(F)$
  - Reconstruction: From the drawn information construct an approximation  $A_n(F) \in Y$  to F
- The minimal distortion of a query algorithm is  $\delta_{A_n}(K) := \inf_{A_n} \sup_{F \in \mathcal{K}} \|F - A_n(F)\|_Y$
- Optimal performance is given by the Gelfand width  $d^{n}(K)_{Y} := \inf_{\substack{\text{codim}(V)=n}} \sup_{f \in \mathcal{K} \cap V} \|f\|_{Y}$

at a point:  $Q_n$  is a cloud of points in HD

However, often we may want to limit the types of queries
 Standard Information: Query asks for the value of F

USC 2019 – p. 21/45

# **Strategies for** $Q_n$

- The best choice for  $Q_n$  depends on the model class K
- However choices for  $Q_n$  generally take two forms
  - Random Queries:
    - Monte Carlo: sampling for HD integration
    - Compressed Sensing: for recovery of sparse signals
    - Albert Cohen Theory: carefully choose the probability measure for randomness
  - Deterministic Querying:
    - Hashing
    - Discrepancy theory(Quasi Monte Carlo) based on number theory-Chinese Remainder Theorem
    - Commutative Algebra (Cohen-Macauley theory): Use finite dimensional fields

#### USC 2019 – p. 22/45

### **Data Assimilation**

- Often we do not have the luxury to query but rather are given information about *F* in the form of data
  - Form of the Data?: We assume

 $w_j = l_j(F), \quad j = 1, \dots, m$ , where  $l_j$  are linear functionals

• Measurement map  $M(F) = w := (w_1, \ldots, w_m)$ 

• An algorithm is a mapping  $A : \mathbb{R}^m \mapsto X$  where A(M(f)) is an approximation to  $f \in X$  giving error

 $E(F, A)_X := E(F, M, A)_X := ||F - A(M(F))||_X$ 

• Optimal Recovery: Find the best algorithm A given M and the model class K: Micchelli and Rivlin in the 1970s

USC 2019 – p. 23/45

# **Optimal Recovery Performance**

We must pay a price for the lack of full information about F when only given data

🥒 Let

$$E(K, M) := \inf_{A} \sup_{F \in K} E(F, M, A)$$

be the optimal error in recovery of K from the given measurement map M

- We can always write  $E(K, M) = \mu(K, M)d^m(K)_X$ where  $d^m$  is the Gelfand width
- $\mu \geq 1$  is the price we pay for not having the optimal m measurements for K
- One can often determine  $\mu$  from the null space  $\mathcal{N} := \{F \in K : \ell_j(F) = 0\}$

#### USC 2019 – p. 24/45

# Examples

- The remainder of this talk will discuss a few prominent examples of HD Model Classes and HD approximation
- I have to be very selective because of time



### **Non-Democracy of Variables**

- Simplest Example:  $F \in C[0, 1]^D$  depends on D variables but only d are active- the d active variables are unknown to us and may vary with F
- K is the set of all such F with  $||D^{\nu}F||_{L_{\infty}} \leq 1$ ,  $|\nu| \leq k$

•  $F(x_1, ..., x_D) = g(x_{j_1}, ..., x_{j_d})$ , where  $g \in C^k$ 

- This problem and many generalizations were studied by DeVore-Petrova-Wojtaszczyk
- $\sum_{n}$  consists of piecewise polynomials of total degree k-1 on a partition of  $[0,1]^{D}$  into n cells
- The polynomial pieces have only d active variables and the partitions depend on F

# **Optimal Algorithmss**

The point clouds in Query Algorithms have two tasks:

- Determine change coordinates  $j_1, \ldots, j_d$
- Give a uniform grid with spacing  $h \simeq n^{-1/d}$  for all d dimensional space spanned by a possible  $j_1, \ldots, j_d$
- Such point clouds are constructed using Hashing

A Hashing query touches every coordinate

 It identifies the change coordinate and creates the piecewise polynomial approximation after gathering all the information

**DPW Theorem:** Error of algorithm on K for n queries is

 $\delta_{A_n}(K) \le C\delta^m(K) \le Cn^{-k/d} \log D$ 

USC 2019 – p. 27/45

# **Anisotropic analyticity**

I choose this next example for several reasons

- $D = \infty$  and F is Banach space valued
- Application to parametric PDEs
- We know model classes via regularity theorems
- $F: U \to X$  is a Banach space valued function depending on  $d = \infty$  variables
  - U the unit ball in  $\ell_{\infty}(I\!\!N)$
  - The elements  $z \in \ell_{\infty}(\mathbb{I}N)$  are bounded sequences  $(z_1, z_2, ...)$  of complex numbers
- Let  $\rho := (\rho_1, \rho_2, ...)$  be an increasing sequence or real numbers with  $\rho_1 > 1$  and define the polydisc  $D_{\rho}$  of z satisfying  $|z_j| \le \rho_j$
- $H_{
  ho}$  the space of F analytic on  $D_{
  ho}$  and contnuous on  $\overline{D}_{
  ho}$  –

USC 2019 – p. 28/45

# **Approximation by Polynomials**

• We want to approximate F in the norm

 $\|\cdot\| := \|\cdot\|_{L_{\infty}(U,X)}$ 

- We approximate F by X valued polynomials
  - Let  $\mathcal{F} := \{\nu = (\nu_1, \nu_2, ...\}$  where the entries in  $\nu$  are nonnegative integers and only a finite number of the  $\nu_j$  are nonzero
  - Given a finite set  $\Lambda \subset \mathcal{F}$ , then  $\mathcal{P}_{\Lambda} := \{P : P = \sum_{\nu \in \Lambda} c_{\nu} z^{\nu}$
  - The possible sets  $\Lambda$  can be quite complicated and so we restrict ourselves to lower sets which mean that  $\nu \in \mathcal{F}$  and  $\mu \leq \nu$  implies  $\mu \in \mathcal{F}$

• 
$$E(F, \mathcal{P}_{\Lambda}) := \inf_{P \in \mathcal{P}_{\Lambda}} ||F - P|$$

USC 2019 – p. 29/45

#### **Model Classes**

• Each  $F \in H_{\rho}$  has a Taylor expansion

$$F = \sum_{\nu \in \mathcal{F}} t_{\nu} z^{\nu}, \quad z \in U$$

where the Taylor coefficients  $t_{\nu}$  are in *X* and satisfy  $||t_{\nu}||_X \leq ||F||_{L_{\infty}} \rho^{-\nu}$ 

- Model Classes (Bachmyar-Cohen-Migliorati):
- For ho and  $0 we say <math>F \in B_{
  ho,p}$  if
  - *F* has Taylor coefficients  $t_{\nu}, \nu \in \mathcal{F}$
  - $F = \sum_{\nu \in \mathcal{F}} t_{\nu} z^{\nu}$  unconditionally on U
  - $||F||_{B_{\rho,p}} := (\rho^{\nu} ||t_{\nu}||_X)_{\nu \in \mathcal{F}} < \infty.$
- These classes are anisotropic

- Approximation Theorem for  $B_{\rho,p}$ ,  $1 \le p \le \infty$ :
  - Rearrange the sequence  $(\rho^{-\nu})_{\nu\in\mathcal{F}}$  into decreasing order:  $\delta_n$  is the *n*-th largest term
  - Let  $\Lambda_n$  is the lower set of size corresponding to the n largest of the  $\rho^{-\nu}$
  - If q is the conjugate index to p: 1/p + 1/q = 1

$$\|F - \sum_{\nu \in \Lambda_n} t_{\nu} z^{\nu}\| \le (\sum_{k>n} \delta_k^q)^{1/q}, \quad n \ge 0$$

- This estimate is in a certain sense optimal
- $\delta_n$  and  $\Lambda_n$  found by sorting
- The asymptotic behavior of  $(\delta_n)$  can be found by counting lattice points inside simplices determined by  $\rho$

## **Other Settings**

- No time to discuss in detail other important settings:
- Sparsity Model Classes
  - Best queries are random Kashin-Gluskin
  - Recovery from queries: Donoho-Candes (see Cohen-Dahmen-DeVore)
- Tensor Structures
- Not enough good Approximation Theory
- Rank one tensors -Bachmyar-Dahmen–DeVore-Grasedyk
- -best queries given by discrepancy theory
- Wolfgang Dahmen: "I can do anything but not everything "

#### USC 2019 – p. 32/45

# **Deep Neural Networks**

- One of the highest profile HD approximation methods is given by deep Neural Networks (talk of Gitta Kutyniok)
- There is still not satisfactory theory to explain its success
- However we are gaining new insights and I want to give my take on this subject
- Surprisingly, I will speak about using deep Neural Networks to approximate univariate functions
- My justification is that even the univariate case is not well enough understood and HD will be even more complex
- I am sure Gitta will be more HD

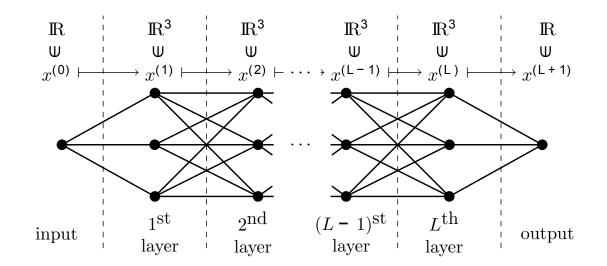
# **Deep ReLU Networks**

- I limit my discussion to the ReLU Networks since these are the most prominent
- $ReLU(y) := \max(y, 0) = y_+$
- Here is a graphic of a NN of width W = 3 and depth L
- Each node is called a neuron
  - Each neuron at a layer  $\ell$  in row i has an associated function  $\eta_{i,\ell}$
  - This function takes the form

$$\eta_{i,\ell} = ReLU(\sum_{j=1}^{W} a_{i,j}\eta_{j,\ell-1} + b_i)$$

where the sum is taken over all neurons of the previous layer that feed to  $\eta_{i,\ell}$ 

## NN graphic with Width =3





## **The layers**

- The first layer consists of the functions  $(a_i x + b_i)_+$
- Subsequent layers are described by a matrix of size  $W \times W$  and a vector  $b \in \mathbb{R}^{W}$
- Output layer just a linear combinations of the functions in layer <u>L</u>
- So the number of parameters used to describe the NN is  $n(W,L) = 2W + (L-1)(W^2 + W) + W \approx LW^2$
- Sometimes one imposes conditions on the matrices that greatly reduce the number of parameters
  - sparse matrices or convolution structure
- $\Upsilon_W^L$  is the set of functions (outputs) of such networks of width W and depth L. This is our approximation family

### **Deep Networks**

- In Deep Networks we fix W and let L get large
- We want to understand the advantages of depth over shallow networks and other methods of approximation
- The functions in  $\Upsilon_W^L$  are Continuous pw Linear (CPwL)
- So the closest classical approximation family to deep networks are the spaces  $\Sigma_n$ ,  $n \ge 1$  where  $\Sigma_n$  consists of all CPwL functions with n arbitrary break points
- Notice that both  $\Upsilon_W^L$  and  $\Sigma_n$  are nonlinear spaces: when adding functions in these spaces the result is not generally in the space
- Also both spaces are examples of manifold approximation

# **Comparing** $\Sigma_n$ and $\Upsilon_W^L$

- To make a fair comparison between these two families of spaces we fix W and define  $\Upsilon_n := \Upsilon_W^{L_n}$  where  $L_n$  is chosen so that  $\Upsilon_n$  is determined by  $\approx n$  parameters
- Two ways to compare
  - How do these two spaces of functions compare (Expressive power)?
  - How well do they approximate?
    - Approximation Classes: Given r > 0 the class  $\mathcal{A}^r((\Upsilon_n), X)$  consists of all  $F \in X$  such that

 $\operatorname{dist}(F,\Upsilon_n)_X \le Mn^{-r}, \quad n \ge 0$ 

- Smallest M is  $||F||_{\mathcal{A}^r}$
- The following results come mainly from Daubechies-DeVore-Foucart-Hanin-Petrova

USC 2019 – p. 38/45

## **First Question**

- Theorem:  $\sum_n$  contained in  $\Upsilon_{Cn}$  for  $n \ge 1$  with an absolute constant, e.g. C = 12
  - So  $\Upsilon_n$  is at least as expressive as  $\Sigma_n$
- There are many examples of functions S that are in  $\Upsilon_n$  but far from being in  $\Sigma_n$
- They are obtained by exploiting the most important property that  $\Upsilon_n$  has that  $\Sigma_n$  does not
  - Given functions F, G, we let  $F \circ G := F(G)$  be the composition of these two functions
  - $F^{\circ n}$  denotes the *n* fold composition of *F* with itself
- If  $S \in \Upsilon_n$  and  $T \in \Upsilon_m$  then  $S \circ T$  is in  $\Upsilon_{n+m}$
- On the other hand, If  $S \in \Sigma_n$  and  $T \in \Sigma_m$  then the best we can say is  $S \circ T$  is in  $\Sigma_{nm}$

#### USC 2019 – p. 39/45

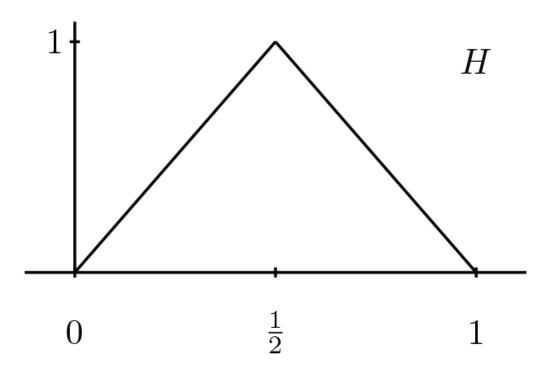
# Examples

Simplest Example the hat function

- *n* fold composition  $H^{\circ n}$  is a saw tooth with  $2^n$  hats
- Piecewise self similar functions
  - If S is in  $\Upsilon_k$  with S(0) = S(1) = 0
  - $I_1, \ldots, I_m$  is a partitioning of [0, 1] into *m* intervals
  - any function which is a scaled version of S on each of these intervals is in  $\Upsilon_{k+6m}$ 
    - We call S a pattern
    - So we can replicate patterns cheaply
    - Such a function is in  $\Sigma_{km}$
  - More generally we can create bases and redundant frames of CPwL

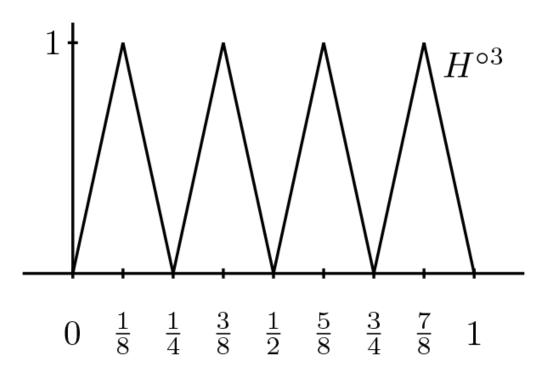
#### USC 2019 – p. 40/45

#### **Hat Function**



USC 2019 – p. 41/45

### Composition



USC 2019 – p. 42/45

# **The Approximation Classes**

- I take X = C[0, 1] and  $\| \cdot \| := \| \cdot \|_X$
- General Principal
  - Let  $\phi_k \in \Upsilon_k$  with  $\|\phi_k\| = 1$
  - $(\alpha_k) \in \ell_1$
  - $\sum_{k \ge n} |\alpha_k| \le M n^{-2r}$
  - Then  $F := \sum_{k=1}^{\infty} \alpha_k \phi_k$  is in  $\mathcal{A}^r((\Upsilon_n), X)$
  - Same property holds with  $(\Upsilon_n)$  replaced by  $(\Sigma_n)$
- The General Principle can be used to construct may interesting F in  $\mathcal{A}^r((\Upsilon_n), X)$ 
  - The Tagoki Function:  $F_T := \sum_{k=1}^{\infty} 2^{-k} H^{\circ k}$ 
    - This functiont is nowhere differentiable
    - It can be approximated to exponential accuracy: It is in all  $\mathcal{A}^r((\Upsilon_n), X)$ , r > 0

#### USC 2019 – p. 43/45

## Many other examples

- Dynamical systems, iterated function systems, fractals, refinement equations give functions that can be approximated with exponential accuracy but the functions are not smooth
- On the other side of the spectrum
  - All analytic functions can be approximated with exponential accuracy
  - This uses the fact that all power function  $x^k$ , k = 1, 2, ... can be approximated to exponential accuracy

# **Other surprizes**

- Yarotsky: Any Lip 1 function can be approximated to accuracy  $O((n \log n)^{-1})$
- The appearance of the log is a surprise
- This result generalizes to many other classical function spaces
- What is going on?
  - The manifold width of Lip 1 is  $\geq Cn^{-1}$
  - Also the entropy numbers of the class Lip 1 are  $\geq C/n$  with an absolute C
  - This means the mapping of F to its approximant cannot be continuous
  - This cautions us to be careful about the Stability of Algorithms

USC 2019 – p. 45/45