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Introduction

o We consider the incompressible Navier-Stokes equations (NSE) on a
bounded domain Q subject to no-slip boundary conditions:

ur+u-Vu—vAu+ Vp=f(x,t) Vx € Q x (0, T]

V-u=0 Vx € Q x (0, T]
u=0 Vx € 022 x (0, T]
u(x,0) = up(x) Vx € Q.
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Introduction

@ Defining:
X = H}Q)! = {H'(Q)¢:v=0 on 99}
Q= Lg(Q):{qu(Q);/Qq:o}.

@ The weak formulation for the NSE can be written as: find
u:[0, T] = X and p: (0, T] = Q such that, for almost all
t € (0, T], satisfy

(ug,v) + (u-Vu,v)+v(Vu,Vv) — (p,V-v)=(f,v) YveX
(V-u,q)=0 Vg e @
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Goals

@ We seek a solution in a low dimensional ROM velocity space Xg with
basis {¢;}R ;, and possibly pressure space Qp with basis {1;}M,.

@ We want the scheme to be fast i.e. use the fewest number of basis
functions possible.

@ We want the scheme to be robust i.e. adding basis functions does not
reduce accuracy.
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Proper Orthogonal Decomposition (POD)

min

2
> (b i)

subject to (i, pj) =05 fori,j=1,...,R,

and

min Z ths : Ph s»%)%Hz

subject to (¢;,¢j) = Jjj for ihj=1,...,M.
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Introduction

@ Often the velocity basis will be assumed to be weakly divergence-free.

@ This will give rise to a velocity only ROM i.e.
“E’H — Ug 1 1 1
(T)SO)_‘_[)*(UE‘? UE+ 790)+V(VUE>+ 7V30) = (fn+ ’90)’ VSO S XR-
@ Issue: In engineering applications we need the pressure to calculate
quantities involving the stresses such as lift and drag.
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Pressure Poisson

@ One approach for recovering the pressure with only the velocity is
solving the Pressure Poisson Equation (Noack et al.
2005),(Caiazzo, lliescu et al. JCP, 2014)

ApM =-V- ((UR . V)UR) in Q.

@ Issues with this approach:

- Correct boundary conditions unclear.
- There are multiple consistent Pressure Poisson Equations.
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Alternate Approach - No Pressure Poisson Equation

Use a ROM pressure basis {1;}M, to solve a coupled system, i.e.

n+1 n
—u *( . n n
( : 7'?,90) + b (up, up™™, @) + V(Vug™, Vo) + (i1, V- 9) = (7 )

At
(V-uzt ¢)=0.

@ Issue: The pressure and velocity basis will not necessarily satisfy the
inf-sup/LBB}, condition

inf sup L VRM) g

awm€Qu veeXy [VVrll llamll —
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Supremizer Stabilization

@ One way to deal with lack of LBBy, stability is the supremizer
approach (Rozza, Veroy. CMAME, 2007, Rozza et al,
Numerische Mathematik, 2013. Ballarin et al IJNME, 2015).

@ Solves a series of generalized eigenvalue problems to determine a new
set of velocity basis functions {¢;}7_;.

o Letting Xg, = {ypi 5:1 U {{,-},-5:1 ensures that LBBj, is satisfied at the
online stage.

inf  sup —(V ' VR, qm)

> Bis >0
am€Qm v, exp, VR lanmll =%

@ This is a very accurate approach.
@ Depending on the problem may not be computationally feasible:

- Calculating the supremizers may be very expensive.
- Have to solve an R+M+S size system at each time step.
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Other Approaches

@ Even more options

- Residual-based stabilization for POD-Galerkin (Caiazzo, lliescu et al.
JCP, 2014).

- Petrov-Galerkin (Dahmen, Carlberg, Parish, Abdulle, Budac).

- Others | am sure | missed.

@ All of these approaches have merit.
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Artificial Compression

@ The approach we consider that circumvents some of the previously
mentioned issues is the artifical compression scheme:

u+u-Vu—vAu+Vp=1f
€pt+V'U:0.

@ Originally proposed by Chorin and Temam, and further developed by
Shen, Guermond, Layton and others.

@ Does not requre LBB}, to be satisfied.

@ Basis functions are constructed from data that does not have to be
weakly-divergence free.

@ Can use not discretely divergence free data.

@ Do not need to worry about boundary conditions for the pressure.
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Artifical Compression ROM

@ The fully discrete algorithm for the Artifical Compression ROM
(AC-ROM) scheme we consider is:

n+1 —u
<RTtR7 90> + b*(uRv n+1, ) + V(Vun+1 VSD)
— (P V@) = (F", ) Y € Xg

ppt—p
(I\/IAIV’7¢> —|—(Vu,’;+1’¢):() V1/1€ QM
@ The velocity and pressure basis are constructed using POD.

@ We can decouple the velocity and pressure system so only separate
M x M and R x R systems need to be solved.
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AC-ROM Analysis

@ In the FEM setting if the basis does not satisfy LBB, we expect to
see convergence order degradation of At~

@ In the POD setting this may be pessimistic depending on the basis
quality.

@ To see this let Pr and yu be L? projections into the reduced basis
velocity and pressure space respectively.

en+1 _ un+1 E,+1 ( n+l PR(un+1)) + (PR(un+1) n+1) n E,+1
et = p"tt —pptt = (P = xm(p") + (em (P — pi ) = KT — Tt
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AC-ROM Analysis

o The problem term in the analysis is (V - n"+%, wp ).

@ We need a better bound than standard Cauchy-Schwarz.
Lemma (Strengthened CBS inequality)

Given a Hilbert space V and two finite dimensional subspaces V; C V and
Vb C V' with trivial intersection:

VinV, = {0},

then there exists 0 < a < 1 such that

|(V17 V2)| < Oé||V1||||V2|| Yvi € Vi,w € Vs,
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Principal Angle

@ We want to determine « from the strengthened CBS inquality.
o Let XV :=span{V - p;}R,
@ We need to calculate the principal angle between X2V and Qu.
. v, ;
01 := min {arccos <‘|‘(‘/HW)’|’> ‘v € X,%”",w € QM} )
with 0 < 64 < g
@ It then follows that oo = cos(61).

@ This can be done using the SVD. Since R and M will be small the
cost will be negligible.
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Principal Angle Calculation

@ Calculating the principal angle is not that expensive in the ROM
setting.

o Let {V - ¢9t}R  denote the orthonormalized basis of X3 . We
consider the matrices

Q = [th1, Y2, ... Ym] and X = [V - 3 V. 3t V. %],
Multiplying these two matrices and taking the SVD gives
X'Q=Uzv.

@ The first principal angle will then be given in terms of the first
nonzero entry of X, by #; = arccos(o1).
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AC-ROM Analysis

Theorem (Error analysis of AC-ROM)

Under appropriate regularity assumptions we have the following error
bound:

N+1
el 1% + elleg ™ (1> + HV d TP+ Ay —HVe”H2
n=1
<C(At+(1+ oﬂAt-l)uvmrz + [1811%)

@ The term a?At™! arises due to the lack of LBB}, stability.

o If o2 is sufficiently small we do not expect to see order reduction with
respect to At.
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AC-ROM analysis

@ We can show that « is actually an upper bound for the inf-sup
constant.

Lemma

Suppose the POD basis is inf-sup stable for some constant ;s then it
holds that o > (;s.

| \

Proof.

V' 3 . V 9
a = sup sup M |nf sup M 2 BIS

aweQm veexz IV - VRl llamll — ame@m vgexz IV VR lamll

@ Small « is good for AC-ROM convergence, bad for saddle point
problem.
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Numerical Experiments

We examine the two-dimensional flow between two offset circles. The
domain is given by

1\? 1
Q= - x? 2 <1 and _ = 2
(x,y) :x“+y“<land (x 5 +y_100,
and is driven by the body force

f(x,y) = (—4y(1 —x° —y2), 4x(1 —x? —yz)).
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Numerical Experiments

All computations done using FEniCS.

Discretize in space via the P>-P! Taylor-Hood element pair with
114,224 velocity and 14,421 pressure degrees of freedom.

Let v = 135, uo = (0,0), po = 0 and u = (0,0) on 9.

Using a BE-AC scheme velocity/pressure snapshots are taken every
At =2.5e — 4 seconds from T =12 to T = 16.

Singular Values of Velocity SVD Singular Values of Pressure SVD
10° 105
103 103
< 10t S 10t
107! 1071
10-3 1073
0 10 20 30 40 50 0 10 20 30 40 50
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Figure: |ug(x)| with R from 1 (top left) to 6 (bottom right).
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Numerical Experiments

@ For the online stage we compute using an equal number of pressure
and velocity modes N, = N, = 3,5, 7.

@ Show Video
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Evolution of Force Due to Drag
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Figure: Evolution of lift (left) and drag (right) for 3,5 and 7 velocity/pressure

basis functions compared to the benchmark.
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Numerical Experiments

Angle Condition for R =M Discrete Inf Sup Constant for R=M
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Figure: Prinicpal angle values (left) and inf-sup constant (right) for N, = N, with
varying R.
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Numerical Experiments

Velocity Error (R=50)

Pressure Error (R=50)
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Figure: Convergence study of the pressure and velocity errors in time with

N, =

/b = 50 basis functions.
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Conclusion

@ AC-ROM scheme decouples pressure and velocity.
@ Does not require the fulfillment of the inf-sup/LBB condition.

@ Does not require weakly divergence-free snapshots.
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