An Artificial Compression Based Reduced Order Model

Victor DeCaria

Collaborators: Traian Iliescu, William Layton, Michael McLaughlin, Michael Schneier

University of Pittsburgh
Department of Mathematics

March 20, 2019

Introduction

- We consider the incompressible Navier-Stokes equations (NSE) on a bounded domain Ω subject to no-slip boundary conditions:

$$
\left\{\begin{aligned}
u_{t}+u \cdot \nabla u-\nu \Delta u+\nabla p & =f(x, t) & & \forall x \in \Omega \times(0, T] \\
\nabla \cdot u & =0 & & \forall x \in \Omega \times(0, T] \\
u & =0 & & \forall x \in \partial \Omega \times(0, T] \\
u(x, 0) & =u_{0}(x) & & \forall x \in \Omega .
\end{aligned}\right.
$$

Introduction

- Defining:

$$
\begin{aligned}
& X:=H_{0}^{1}(\Omega)^{d}=\left\{H^{1}(\Omega)^{d}: v=0 \text { on } \partial \Omega\right\} \\
& Q:=L_{0}^{2}(\Omega)=\left\{q \in L^{2}(\Omega): \int_{\Omega} q=0\right\}
\end{aligned}
$$

- The weak formulation for the NSE can be written as: find $u:[0, T] \rightarrow X$ and $p:(0, T] \rightarrow Q$ such that, for almost all $t \in(0, T]$, satisfy

$$
\left\{\begin{aligned}
\left(u_{t}, v\right)+(u \cdot \nabla u, v)+\nu(\nabla u, \nabla v)-(p, \nabla \cdot v) & =(f, v) & & \forall v \in X \\
(\nabla \cdot u, q) & =0 & & \forall q \in Q
\end{aligned}\right.
$$

Goals

- We seek a solution in a low dimensional ROM velocity space X_{R} with basis $\left\{\varphi_{i}\right\}_{i=1}^{R}$, and possibly pressure space Q_{M} with basis $\left\{\psi_{i}\right\}_{i=1}^{M}$.
- We want the scheme to be fast i.e. use the fewest number of basis functions possible.
- We want the scheme to be robust i.e. adding basis functions does not reduce accuracy.

Proper Orthogonal Decomposition (POD)

$$
\min \sum_{n=0}^{N}\left\|u_{h, s}^{n}-\sum_{j=1}^{R}\left(u_{h, s}^{n}, \varphi_{j}\right) \varphi_{j}\right\|^{2}
$$

subject to $\left(\varphi_{i}, \varphi_{j}\right)=\delta_{i j} \quad$ for $i, j=1, \ldots, R$,
and

$$
\begin{array}{r}
\min \sum_{n=0}^{N}\left\|p_{h, s}^{n}-\sum_{j=1}^{M}\left(p_{h, s}^{n}, \psi_{j}\right) \psi_{j}\right\|^{2} \\
\text { subject to }\left(\psi_{i}, \psi_{j}\right)=\delta_{i j} \quad \text { for } i, j=1, \ldots, M .
\end{array}
$$

Introduction

- Often the velocity basis will be assumed to be weakly divergence-free.
- This will give rise to a velocity only ROM i.e.

$$
\left(\frac{u_{R}^{n+1}-u_{R}^{n}}{\Delta t}, \varphi\right)+b^{*}\left(u_{R}^{n}, u_{R}^{n+1}, \varphi\right)+\nu\left(\nabla u_{R}^{n+1}, \nabla \varphi\right)=\left(f^{n+1}, \varphi\right), \quad \forall \varphi \in X_{R}
$$

- Issue: In engineering applications we need the pressure to calculate quantities involving the stresses such as lift and drag.

Pressure Poisson

- One approach for recovering the pressure with only the velocity is solving the Pressure Poisson Equation (Noack et al. 2005),(Caiazzo, lliescu et al. JCP, 2014),:

$$
\Delta p_{M}=-\nabla \cdot\left(\left(u_{R} \cdot \nabla\right) u_{R}\right) \quad \text { in } \Omega
$$

- Issues with this approach:
- Correct boundary conditions unclear.
- There are multiple consistent Pressure Poisson Equations.

Alternate Approach - No Pressure Poisson Equation

Use a ROM pressure basis $\left\{\psi_{i}\right\}_{i=1}^{M}$ to solve a coupled system, i.e.

$$
\begin{aligned}
\left(\frac{u_{R}^{n+1}-u_{R}^{n}}{\Delta t}, \varphi\right)+b^{*}\left(u_{R}^{n}, u_{R}^{n+1}, \varphi\right)+\nu\left(\nabla u_{R}^{n+1}, \nabla \varphi\right)+\left(p_{M}^{n+1}, \nabla \cdot \varphi\right) & =\left(f^{n+1}, \varphi\right) \\
\left(\nabla \cdot u_{R}^{n+1}, \psi\right) & =0
\end{aligned}
$$

- Issue: The pressure and velocity basis will not necessarily satisfy the inf-sup/ $L B B_{h}$ condition

$$
\inf _{q_{M} \in Q_{M}} \sup _{v_{R} \in X_{R}} \frac{\left(\nabla \cdot v_{R}, q_{M}\right)}{\left\|\nabla v_{R}\right\|\left\|q_{M}\right\|} \geq \beta_{i s}>0
$$

Supremizer Stabilization

- One way to deal with lack of $L B B_{h}$ stability is the supremizer approach (Rozza, Veroy. CMAME, 2007, Rozza et al, Numerische Mathematik, 2013. Ballarin et al IJNME, 2015).
- Solves a series of generalized eigenvalue problems to determine a new set of velocity basis functions $\left\{\xi_{i}\right\}_{i=1}^{S}$.
- Letting $X_{R_{s}}=\left\{\varphi_{i}\right\}_{i=1}^{R} \cup\left\{\xi_{i}\right\}_{i=1}^{S}$ ensures that $L B B_{h}$ is satisfied at the online stage.

$$
\inf _{q_{M} \in Q_{M}} \sup _{v_{R_{s}} \in X_{R_{s}}} \frac{\left(\nabla \cdot v_{R_{s}}, q_{M}\right)}{\left\|\nabla v_{R_{s}}\right\|\left\|q_{M}\right\|} \geq \beta_{i s}>0
$$

- This is a very accurate approach.
- Depending on the problem may not be computationally feasible:
- Calculating the supremizers may be very expensive.
- Have to solve an $R+M+S$ size system at each time step.

Other Approaches

- Even more options
- Residual-based stabilization for POD-Galerkin (Caiazzo, lliescu et al. JCP, 2014).
- Petrov-Galerkin (Dahmen, Carlberg, Parish, Abdulle, Budac).
- Others I am sure I missed.
- All of these approaches have merit.

Artificial Compression

- The approach we consider that circumvents some of the previously mentioned issues is the artifical compression scheme:

$$
\begin{aligned}
& u_{t}+u \cdot \nabla u-\nu \Delta u+\nabla p=f \\
& \varepsilon p_{t}+\nabla \cdot u=0
\end{aligned}
$$

- Originally proposed by Chorin and Temam, and further developed by Shen, Guermond, Layton and others.
- Does not requre $L B B_{h}$ to be satisfied.
- Basis functions are constructed from data that does not have to be weakly-divergence free.
- Can use not discretely divergence free data.
- Do not need to worry about boundary conditions for the pressure.

Artifical Compression ROM

- The fully discrete algorithm for the Artifical Compression ROM (AC-ROM) scheme we consider is:

$$
\begin{array}{ll}
\left(\frac{u_{R}^{n+1}-u_{R}^{n}}{\Delta t}, \varphi\right)+b^{*}\left(u_{R}^{n}, u_{R}^{n+1}, \varphi\right)+\nu\left(\nabla u_{R}^{n+1}, \nabla \varphi\right) \\
-\left(p_{M}^{n+1}, \nabla \cdot \varphi\right)=\left(f^{n+1}, \varphi\right) & \forall \varphi \in X_{R} \\
\varepsilon\left(\frac{p_{M}^{n+1}-p_{M}^{n}}{\Delta t}, \psi\right)+\left(\nabla \cdot u_{R}^{n+1}, \psi\right)=0 & \forall \psi \in Q_{M} .
\end{array}
$$

- The velocity and pressure basis are constructed using POD.
- We can decouple the velocity and pressure system so only separate $M \times M$ and $R \times R$ systems need to be solved.

AC-ROM Analysis

- In the FEM setting if the basis does not satisfy $L B B_{h}$ we expect to see convergence order degradation of Δt^{-1}.
- In the POD setting this may be pessimistic depending on the basis quality.
- To see this let P_{R} and χ_{M} be L^{2} projections into the reduced basis velocity and pressure space respectively.

$$
\begin{aligned}
& e_{u}^{n+1}=u^{n+1}-u_{R}^{n+1}=\left(u^{n+1}-P_{R}\left(u^{n+1}\right)\right)+\left(P_{R}\left(u^{n+1}\right)-u_{R}^{n+1}\right)=\eta^{n+1}-\xi_{R}^{n+1} \\
& e_{p}^{n+1}=p^{n+1}-p_{M}^{n+1}=\left(p^{n+1}-\chi_{M}\left(p^{n+1}\right)\right)+\left(\chi_{M}\left(p^{n+1}\right)-p_{M}^{n+1}\right)=\kappa^{n+1}-\pi_{M}^{n+1} .
\end{aligned}
$$

AC-ROM Analysis

- The problem term in the analysis is $\left(\nabla \cdot \eta^{n+1}, \pi_{M}^{n+1}\right)$.
- We need a better bound than standard Cauchy-Schwarz.

Lemma (Strengthened CBS inequality)

Given a Hilbert space V and two finite dimensional subspaces $V_{1} \subset V$ and $V_{2} \subset V$ with trivial intersection:

$$
V_{1} \cap V_{2}=\{0\}
$$

then there exists $0 \leq \alpha<1$ such that

$$
\left|\left(v_{1}, v_{2}\right)\right| \leq \alpha\left\|v_{1}\right\|\left\|v_{2}\right\| \quad \forall v_{1} \in V_{1}, v_{2} \in V_{2} .
$$

Principal Angle

- We want to determine α from the strengthened CBS inquality.
- Let $X_{R}^{\text {div }}:=\operatorname{span}\left\{\nabla \cdot \varphi_{i}\right\}_{i=1}^{R}$
- We need to calculate the principal angle between $X_{R}^{\text {div }}$ and Q_{M}.

$$
\theta_{1}:=\min \left\{\left.\arccos \left(\frac{|(v, \psi)|}{\|v\|\|\psi\|}\right) \right\rvert\, v \in X_{R}^{\text {div }}, \psi \in Q_{M}\right\}
$$

with $0 \leq \theta_{1} \leq \frac{\pi}{2}$.

- It then follows that $\alpha=\cos \left(\theta_{1}\right)$.
- This can be done using the SVD. Since R and M will be small the cost will be negligible.

Principal Angle Calculation

- Calculating the principal angle is not that expensive in the ROM setting.
- Let $\left\{\nabla \cdot \varphi_{i}^{\text {orth }}\right\}_{i=1}^{R}$ denote the orthonormalized basis of $X_{R}^{\text {div }}$. We consider the matrices

$$
\mathbb{Q}=\left[\psi_{1}, \psi_{2}, \ldots \psi_{M}\right] \text { and } \mathbb{X}=\left[\nabla \cdot \varphi_{2}^{\text {orth }}, \nabla \cdot \varphi_{2}^{\text {orth }}, \ldots \nabla \cdot \varphi_{R}^{\text {orth }}\right] .
$$

Multiplying these two matrices and taking the SVD gives

$$
\mathbb{X}^{\top} \mathbb{Q}=U \Sigma V
$$

- The first principal angle will then be given in terms of the first nonzero entry of Σ, by $\theta_{1}=\arccos \left(\sigma_{1}\right)$.

AC-ROM Analysis

Theorem (Error analysis of AC-ROM)

Under appropriate regularity assumptions we have the following error bound:

$$
\begin{aligned}
\left\|e_{u}^{N+1}\right\|^{2} & +\epsilon\left\|e_{p}^{N+1}\right\|^{2}+\frac{\nu \Delta t}{2}\left\|\nabla e_{u}^{N+1}\right\|^{2}+\Delta t \sum_{n=1}^{N+1} \frac{\nu}{2}\left\|\nabla e_{u}^{n}\right\|^{2} \\
\leq & C\left(\Delta t+\left(1+\alpha^{2} \Delta t^{-1}\right)\|\nabla \eta\|^{2}+\|\kappa\|^{2}\right)
\end{aligned}
$$

- The term $\alpha^{2} \Delta t^{-1}$ arises due to the lack of $L B B_{h}$ stability.
- If α^{2} is sufficiently small we do not expect to see order reduction with respect to Δt.

AC-ROM analysis

- We can show that α is actually an upper bound for the inf-sup constant.

Lemma

Suppose the POD basis is inf-sup stable for some constant $\beta_{\text {is }}$ then it holds that $\alpha \geq \beta_{\text {is }}$.

Proof.

$$
\alpha=\sup _{q_{M} \in Q_{M}} \sup _{v_{R} \in X_{R}} \frac{\left(\nabla \cdot v_{R}, q_{M}\right)}{\left\|\nabla \cdot v_{R}\right\|\left\|q_{M}\right\|} \geq \inf _{q_{M} \in Q_{M}} \sup _{v_{R} \in X_{R}} \frac{\left(\nabla \cdot v_{R}, q_{M}\right)}{\left\|\nabla v_{R}\right\|\left\|q_{M}\right\|} \geq \beta_{\text {is }}
$$

- Small α is good for AC-ROM convergence, bad for saddle point problem.

Numerical Experiments

We examine the two-dimensional flow between two offset circles. The domain is given by

$$
\Omega=\left\{(x, y): x^{2}+y^{2} \leq 1 \text { and }\left(x-\frac{1}{2}\right)^{2}+y^{2} \geq \frac{1}{100}\right\}
$$

and is driven by the body force

$$
f(x, y)=\left(-4 y\left(1-x^{2}-y^{2}\right), 4 x\left(1-x^{2}-y^{2}\right)\right)
$$

Numerical Experiments

- All computations done using FEniCS.
- Discretize in space via the $P^{2}-P^{1}$ Taylor-Hood element pair with 114,224 velocity and 14,421 pressure degrees of freedom.
- Let $\nu=\frac{1}{100}, u_{0}=(0,0), p_{0}=0$ and $u=(0,0)$ on $\partial \Omega$.
- Using a BE-AC scheme velocity/pressure snapshots are taken every $\Delta t=2.5 e-4$ seconds from $T=12$ to $T=16$.

Figure: $\left|u_{R}(x)\right|$ with R from 1 (top left) to 6 (bottom right).

Numerical Experiments

- For the online stage we compute using an equal number of pressure and velocity modes $N_{v}=N_{p}=3,5,7$.
- Show Video

Numerical Experiments

Figure: Evolution of lift (left) and drag (right) for 3,5 and 7 velocity/pressure basis functions compared to the benchmark.

Numerical Experiments

Figure: Prinicpal angle values (left) and inf-sup constant (right) for $N_{v}=N_{p}$ with varying R.

Numerical Experiments

Figure: Convergence study of the pressure and velocity errors in time with $N_{v}=N_{p}=50$ basis functions.

Conclusion

- AC-ROM scheme decouples pressure and velocity.
- Does not require the fulfillment of the inf-sup/LBB condition.
- Does not require weakly divergence-free snapshots.

