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1. Motivation for least square methods



Inverse problems : estimating state from pointwise data

Example : An acoustic pressure field p(y , t) generated by a source is measured by m
microphones at positions y1, . . . , ym

2 Y ⇢ R2 or R3, for t 2 [0,T ].

Fourier analysis in time p(y i , t) 7! p̂(xi ,!) and focus at a frequency ! of interest.

One wants to reconstruct the unknown function y 7! u(y) := p̂(y ,!) on Y , from the
observed data u(y i ) for i = 1, . . . ,m.

Approximation of high dimensional parametric PDE’s

Partial di↵erential equation P(u, y) = 0 depending on a parameter vector y 2 Y ⇢ Rd

with d >> 1.

Simple example : steady state di↵usion equation

-div(aru) = f ,

on a physical domain D, with homogeneous Dirichlet boundary conditions u|@D = 0.

Assume a di↵usion function a that is piecewise constant on subdomains D1, . . . ,Dd ,
with values y1, . . . , yd , which define the parameter vector
y = (y1, . . . , yd ) 2 Y = [ymin, ymax]d .



Non-intrusive methods

For each y 2 Y , the PDE is well posed in some Hilbert space V : solution map

y 2 Y 7! u(y) 2 V .

For the di↵usion equation V = H1
0 (D) (Lax-Milgram).

The parameters may be deterministic (control, optimization, inverse problems) or
random distributed according to a probability distribution ⇢ (uncertainty modeling and
quantification, risk assessment, inverse problems). In the second case the solution u(y)
is a V -valued random variable.

The solution map is di�cult to capture numerically (curse of dimensionality).

Objective : reconstruct the solution map, from “snapshots” : particular instances of
solutions u(y i ) for i = 1, . . . ,m computed by some numerical solver (non-intrusive).

In practice we query y 7! uh(y) 2 Vh (finite element space).

Related objectives : numerical approximation of scalar quantities of interest
y 7! Q(y) = Q(u(y)) 2 R, or of averaged quantities u = E(u(y)) or Q = E(Q(y)).

General features

Reconstruction of unknown function

u : y 2 Y 7! u(y) 2 R (or V or Vh),

from scattered measurements ui = u(y i ) for i = 1, . . . ,m with y i
2 Y ⇢ Rd .

For notational simplicity we consider scalar valued functions u.

Measurements are costly : one cannot a↵ord to have m >> 1.

Measurements could be noisy : ui = u(y i ) + ⌘i .

Analogies with statistical learning :

Non-parametric regression framework : from a random sample (y i , ui )i=1,...,m with
unknown joint density, approximate y 7! u(y).

Here active learning : the y i are chosen by us (deterministically or randomly).

General questions : how should we sample ? how should we reconstruct ?



Approximability prior

The unknown function u is well approximated from some n-dimensional space Vn

en(u) := min
v2Vn

ku - vk  "(n),

where "(n) is a known bound and where

kvk := kvkL2(Y ,⇢),

with ⇢ a probability measure on Y .

For certain parametric PDEs, one relevant choice is a sparse polynomial space

Vn = P⇤n = span
⌦
y ! y⌫ =

Y

j�1

y
⌫j
j : ⌫ = (⌫j )j�1 2 ⇤n

↵
,

where ⇤n is an index set such that #(⇤n) = n. Suitable choices of ⇤n obtained by
best n-term truncation of L2(Y , ⇢) orthonormal polynomial series provide with rates
"(n) ⇠ n-s that persist when d = 1.

Sample result (Bachmayr-Cohen-DeVore-Migliorati 2015) for the a�ne and lognormal
models : if

P
j�1 j | j | < 1 with (-1

j ) 2 `q , then "(n) ⇠ n-s with s = 1
q .

Objectives

Use the samples {u(y i ) : i = 1, . . . ,m} to reconstruct an approximation un 2 Vn with
certain optimality properties.

Instance optimality : ku - unk  Cen(u) for any u, for some fixed C .

Rate optimality : if en(u)  C0n-s for all n, then ku - unk  C1n-s .

Budget optimality : this shoud be achieved with m ⇠ n samples (up to log factors).

Progressivity : for a given or adaptively selected sequence of space

V0 ⇢ V1 ⇢ · · · ⇢ Vn · · · ,

these objective should be met at each step with a cumulated sampling budget O(n)
(previous samples should be recycled).



Approximating the exact projection

The L2(Y , ⇢)-projection Pnu of u has the accuracy en(u).

It can be either described as

Pnu = argmin
⌦ Z

Y
|u(y) - v(y)|2d⇢(y) : v 2 Vn

↵
,

or

Pnu =
nX

j=1

cjLj , cj :=

Z

Y
u(y)Lj (y)d⇢(y),

where (L1, . . . , Ln) is an orthonormal basis of Vn.

Its exact computation is out of reach =) replace the integrals by a discrete sum

Z

Y
v(y)d⇢(y) ⇡

1

m

mX

i=1

w(y i )v(y i ).

where w is a weight function.

Resulting approximation methods

Least-squares method :

uLS
n := argmin

⌦ 1

m

mX

i=1

w(y i )|u(y i ) - v(y i )|2 : v 2 Vn

↵
.

Pseudo-spectral method :

uPS
n :=

nX

j=1

c̃j Lj , c̃j :=
1

m

mX

i=1

w(y i )u(y i )Lj (y
i ).

Questions : what prior spaces Vn should we use ? How should we sample to get
instance/rate/budget optimality ?



2. Polynomial approximation of high-dimensional parametrized PDEs
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Guiding example : elliptic PDEs

We consider the steady state di↵usion equation

-div(aru) = f on D ⇢ IRm and u|@D = 0,

set on a domain D ⇢ Rm, where f = f (x) 2 L2(D) and a 2 L1(D)

Lax-Milgram lemma : assuming amin := minx2D a(x) > 0, unique solution
u 2 V = H1

0 (D) with

kukV := krukL2(D) 
1

amin
kf kV 0 .

Proof of the estimate : multiply equation by u and integrate

aminkuk
2
V 

Z

D
aru ·ru = -

Z

D
u div(aru) =

Z

D
uf  kukV kf kV 0 .

We may extend this theory to the solution of the weak (or variational) formulation

Z

D
aru ·rv = hf , vi, v 2 V = H1

0 (D),

if f 2 V 0 = H-1(D)

Parametrization

Assume di↵usion coe�cients in the form of an expansion

a = a(y) = a +
X

j�1

yj j , y = (yj )j�1 2 Y ,

with d >> 1 or d = 1 terms, where a and ( j )j�1 are functions from L1,

Note that a(y) is a function for each given y . We may also write

a = a(x , y) = a(x) +
X

j�1

yj j (x), x 2 D, y 2 Y ,

where x and y are the spatial and parametric variable, respectively. Likewise, the
corresponding solution u(y) is a function x 7! u(y , x) for each given y . We often
ommit the reference to the spatial variable.

Up to a change of variable, we assume that all yj range in [-1, 1], therefore

y 2 Y = [-1, 1]d or [-1, 1]N.

Uniform ellipticity assumption :

(UEA) 0 < r  a(x , y)  R, x 2 D, y 2 Y

Then the solution map is bounded from Y to V := H1
0 (D), that is, u 2 L1(Y ,V ) :

ku(y)kV  Cr :=
kf kV 0

r
, y 2 Y ,



Polynomial approximation

Approximations of the form

un(y) =
X

⌫2⇤n

c⌫y
⌫,

with #(⇤n) = n and c⌫ 2 V .

Here y⌫ =
Q

j�1 y
⌫j
j for ⌫ = (⌫j )j�1 2 F finitely supported sequence.

Thus un 2 Vn = V⇤n where V⇤ = V ⌦ P⇤ with P⇤ = span{y⌫ : ⌫ 2 ⇤}.

Strategy for theoretical approximation results :

Expand y 7! u(y) as a polynomial series : Taylor, Legendre, Chebychev, Hermite...

Truncate the series by keeping n well chosen terms.

The choice of the truncation set ⇤n is critical.

Measure of performance

1. Uniform sense
ku - unkL1(Y ,V ) := sup

y2Y
ku(y) - un(y)kV ,

2. Mean-square sense, for some probability measure ⇢ on Y ,

ku - unk
2
L2(Y ,V ,⇢) :=

Z

Y
ku(y) - un(y)k

2
V d⇢(y).

If y randomly distributed according to this measure, we have

ku - unk
2
L2(Y ,V ,⇢) = E(ku(y) - un(y)k

2
V ).

Note that we always have

E(ku(y) - un(y)k
2
V )  ku - unk

2
L1(Y ,V ).

A “worst case” estimate is more pessimistic than an “average” estimate.



Sparse approximation in `q spaces : fundamental observation (Stechkin)

Consider sequences d = (d⌫)⌫2F in `q(F) where F is a countable index set.

Best n-term approximation : we seek to approximate d by a sequence supported on a
set of size n.

Best choice : dn defined by leaving d⌫ unchanged for the n largest |d⌫| and setting the
others to 0.

Lemma : for 0 < p < q  1, one has

d 2 `p(F) =) kd - dnk`q  C (n + 1)-s , s =
1

p
-

1

q
, C := kdk`p .

Proof : introduce (d⇤
k )k�1 the decreasing rearrangement of (|d⌫|)⌫2F , and combine

kd - dnk
q
`q =

X

k>n

|d⇤
k |

q =
X

k>n

|d⇤
k |

q-p |d⇤
k |

p
 Cp |d⇤

n+1|
q-p

with

(n + 1)|d⇤
n+1|

p


n+1X

k=1

|d⇤
k |

p
 Cp .

Note that a large value of s corresponds to a value p < 1 (non-convex spaces).

From sequence approximation to Banach space valued function approximation

If a V -valued u has an expansion of the form u(y) =
P
⌫2F u⌫�⌫(y), in a given basis

(�⌫)⌫2F , we use Stechkin’s lemma to study the approximation of u by

un :=
X

⌫2⇤n

u⌫�⌫,

where ⇤n ⇢ F corresponds to the n-largest ku⌫kV .

If supy2Y |�⌫(y)| = 1, then by triangle inequality

ku - unkL1(Y ,V ) 
X

⌫/2⇤n

ku⌫�⌫kL1(Y ,V ) =
X

⌫/2⇤n

ku⌫kV ,

If (�⌫)⌫2F is an orthonormal basis of L2(Y , ⇢), then by Parseval equality

ku - unk
2
L2(Y ,V ,⇢) =

X

⌫/2⇤n

ku⌫k
2
V ,

For concrete choices of bases a relevant question is thus : what smoothness properties
of a function ensure that its coe�cient sequence belongs to `p for small values of p ?

In the case of wavelet bases, such properties are characterized by Besov spaces.

In our present setting of high-dimensional functions y 7! u(y) we rather use
tensor-product polynomial bases instead of wavelet bases. Sparsity properties follows
to the anisotropic features of these functions.



Return to the main guiding example

Steady state di↵usion equation

-div(aru) = f on D ⇢ IRm and u|@D = 0,

where f = f (x) 2 L2(D) and the di↵usion coe�cients are given by

a = a(x , y) = a(x) +
X

j�1

yj j (x),

where a and the ( j )j�1 are given functions and y 2 Y := [-1, 1]N. Uniform ellipticity
assumption :

(UEA) 0 < r  a(x , y)  R, x 2 D, y 2 Y .

Equivalent expression of (UEA) : ā 2 L1(D) and
X

j�1

| j (x)|  ā(x) - r , x 2 D,

or �����

P
j�1 | j |

a

�����
L1(D)

 ✓ < 1.

Lax-Milgram : solution map is well-defined from Y to V := H1
0 (D) with uniform bound

ku(y)kV  Cr :=
kf kV 0

r
, y 2 Y , where kvkV := krvkL2 .

Sparse polynomial approximations using Taylor series

We consider the expansion of u(y) =
P
⌫2F t⌫y⌫, where

y⌫ :=
Y

j�1

y
⌫j
j and t⌫ :=

1

⌫!
@⌫u|y=0 2 V with ⌫! :=

Y

j�1

⌫j ! and 0! := 1.

where F is the set of all finitely supported sequences of integers (finitely many
⌫j 6= 0). The sequence (t⌫)⌫2F is indexed by countably many integers.

ν

1

ν3

2

ν

Objective : identify a set ⇤ ⇢ F with #(⇤) = n such that u is well approximated by
the partial expansion

u⇤(y) :=
X

⌫2⇤
t⌫y

⌫.



Best n-term approximation

Stechkin : if (kt⌫kV )⌫2F 2 `p(F) for some p < 1, then for this ⇤n,

X

⌫/2⇤n

kt⌫kV  Cn-s , s :=
1

p
- 1, C := k(kt⌫kV )k`p .

Question : do we have (kt⌫kV )⌫2F 2 `p(F) for some p < 1 ?

Cohen-DeVore-Schwab (2011) : under the uniform ellipticity assumption (UAE), then
for any p < 1,

(k jkL1 )j�1 2 `p(N) =) (kt⌫kV )⌫2F 2 `p(F).

We approximate u(y) in L1(Y ,V ) with algebraic rate O(n-s ) despite the curse of
(infinite) dimensionality, due to the fact that yj is less influencial as j gets large. Such
approximation rates cannot be proved for the usual a-priori choices of ⇤.

Same result for more general linear equations Au = f with a�ne operator
dependance : A = A +

P
j�1 yjAj uniformly invertible over y 2 Y , and

(kAjkV!W )j�1 2 `p(N), as well as other models (parabolic problems).

Key ingredient of proof : holomorphic extension of the solution map z 7! u(z).

Idea of proof : extension to complex variable

Estimates on kt⌫kV by complex analysis : extend u(y) to u(z) with z = (zj ) 2 C|| IN.

Uniform ellipticity
P

j�1 | j |  a - r implies that with a(z) = a +
P

j�1 zj j ,

0 < r  <(a(x , z))  |a(x , z)|  2R, x 2 D,

for all z 2 U := {|z |  1}N = ⌦j�1{|zj |  1}.

Lax-Milgram theory applies : ku(z)kV  C0 =
kf kV⇤

r for all z 2 U .

The function u 7! u(z) is holomorphic in each variable zj at any z 2 U : its first
derivative @zj u(z) is the unique solution to

Z

D
a(z)r@zj u(z) ·rv = -

Z

D
 jru(z) ·rv , v 2 V .

Note that r is with respect to spatial variable x 2 D.

Extended domains of holomorphy : if ! = (!j )j�0 is any positive sequence such that
for some � > 0 X

j�1

!j | j (x)|  a(x) - �, x 2 D,

then u is holomorphic with uniform bound ku(z)k  C� =
kf kV⇤
�

in the polydisc

U! := ⌦j�1{|zj |  !j },

If � < r , we can take !j > 1.



Estimate on the Taylor coe�cients

Use Cauchy formula. In 1 complex variable if z 7! u(z) is holomorphic and bounded in
a neighbourhood of disc {|z |  b}, then for all z in this disc

u(z) =
1

2i⇡

Z

|z 0|=b

u(z 0)

z - z 0 dz
0,

which leads by n di↵erentiation at z = 0 to |u(n)(0)|  n!b-n max|z|b |u(z)|.

Recursive application of this to all variables zj such that ⌫j 6= 0, with b = !j gives

k@⌫u|z=0kV  C�⌫!
Y

j�1

!
-⌫j
j ,

and thus
kt⌫kV  C�

Y

j�1

!
-⌫j
j = C�!

-⌫,

for any sequence ! = (!j )j�1 such that

X

j�1

!j | j (x)|  a(x) - �.

Optimization

Since ! is not fixed we have

kt⌫kV  C� inf
�
!-⌫ : ! s.t.

X

j�1

!j | j (x)|  a(x) - �, x 2 D
 
.

We do not know the general solution to this problem, except in particular case, for
example when the  j have disjoint supports.

Instead design a particular choice ! = !(⌫) satisfying the constraint with � = r/2, for
which we prove that

(k jkL1 )j�1 2 `p(N) =) (!(⌫)-⌫)⌫2F 2 `p(F),

therefore proving the main theorem.



A simple case

Assume that the  j have disjoint supports. Then we maximize separately the !j so
that X

j�1

!j | j (x)|  a(x) -
r

2
, x 2 D,

which leads to

!j := min
x2D

a(x) - r
2

| j (x)|
.

We have, with � = r
2 ,

kt⌫kV  C�!
-⌫ = C�b

⌫,

where b = (bj ) and

bj := !
-1
j = max

x2D

| j (x)|

a(x) - r
2


k jkL1

R - r
2

.

Therefore b 2 `p(N). From (UEA), we have | j (x)|  a(x) - r and thus kbk`1 < 1.
We finally observe that

b 2 `p(N) and kbk`1 < 1 () (b⌫)⌫2F 2 `p(F).

Proof : factorize X

⌫2F
bp⌫ =

Y

j�1

X

n�0

bpnj =
Y

j�1

1

1 - bpj
.

Improved summability results

One limitation of the previous result is that it depends on the  j only through k jkL1 ,
without taking their support into account. Improved results can be obtained, without
relying on complex variable, by better exploiting the specific structure of PDE.

Recursive formula for the Taylor coe�cients : with ej = (0, . . . , 0, 1, 0, . . . ) the
Kroeneker sequence of index j , the coe�cient t⌫ is solution to

Z

D
ārt⌫rv = -

X

j : ⌫j 6=0

Z

D
 jrt⌫-ejrv , v 2 V .

We introduce the quantities

d⌫ :=

Z

D
a|rt⌫|

2 and d⌫,j :=

Z

D
| j | |rt⌫|

2.

Recall that (UEA) implies that

����
P

j�1 | j |

a

����
L1(D)

 ✓ < 1. In particular

X

j�1

d⌫,j  ✓d⌫.

We use here the equivalent norm kvk2V :=
R
D a|rv |2.

Lemma : under (UEA), one has
P
⌫2F d⌫ =

P
⌫2F kt⌫k2V < 1.



Proof

Taking v = t⌫ in the recursion gives

d⌫ =

Z

D
a|rt⌫|

2 = -
X

j : ⌫j 6=0

Z

D
 jrt⌫-ejrt⌫.

Apply Young’s inequality on the right side gives

d⌫ 

X

j : ⌫j 6=0

⇣1

2

Z

D
| j | |rt⌫|

2 +
1

2

Z

D
| j | |rt⌫-ej |

2
⌘
=

1

2

X

j : ⌫j 6=0

d⌫,j +
1

2

X

j : ⌫j 6=0

d⌫-ej ,j .

The first sum is bounded by ✓d⌫, therefore

⇣
1 -

✓

2

⌘
d⌫ 

1

2

X

j : ⌫j 6=0

d⌫-ej ,j .

Now summing over all |⌫| = k gives

⇣
1 -

✓

2

⌘ X

|⌫|=k

d⌫ 
1

2

X

|⌫|=k

X

j : ⌫j 6=0

d⌫-ej ,j =
1

2

X

|⌫|=k-1

X

j�1

d⌫,j 
✓

2

X

|⌫|=k-1

d⌫.

Therefore
P

|⌫|=k d⌫  
P

|⌫|=k-1 d⌫ with  := ✓
2-✓ < 1, and thus

P
⌫2F d⌫ < 1.

Rescaling

Now let ! = (!j )j�1 be any sequence with !j > 1 such that
P

j�1!j | j |  a - � for

some � > 0, or equivalently such that

����
P

j�1!j | j |

a

����
L1(D)

 ✓ < 1.

Consider the rescaled solution map ũ(y) = u(!y) where !y := (!j yj )j�1 which is the
solution of the same problem as u with  j replaced by !j j .

Since (UEA) holds for for these rescaled functions, the previous lemma shows that

X

⌫2F
kt̃⌫k

2
V < 1,

where

t̃⌫ :=
1

⌫!
@⌫ũ(0) =

1

⌫!
!⌫@⌫u(0) = !⌫t⌫.

This therefore gives the weighted `2 estimate

X

⌫2F
(!⌫kt⌫kV )

2
 C < 1.

In particular, we retrieve the estimate kt⌫kV  C!-⌫ that can be obtained by a
complex variable approach (holomorphy of the solution map y 7! u(y)), however the
above estimate is a bit stronger.



An alternate summability result

Applying Hölder’s inequality gives

X

⌫2F
kt⌫k

p
V 

⇣X

⌫2F
(!⌫kt⌫kV )

2
⌘p/2⇣X

⌫2F
!-q⌫

⌘1-p/2
,

with q = 2p
2-p > p, or equivalently 1

q = 1
p - 1

2 .

The sum in second factor is finite provided that (!-1
j )j�1 2 `q . Therefore, the

following result holds.

Bachmayr-Cohen-Migliorati (2017) : Let p and q be such that 1
q = 1

p - 1
2 . Assume

that there exists a sequence ! = (!j )j�1 of numbers larger than 1 such that

X

j�1

!j | j |  a - �,

for some � > 0 and
(!-1

j )j�1 2 `q .

Then (kt⌫kV )⌫2F 2 `p(F).

The above conditions ensuring `p summability of (kt⌫kV )⌫2F are significantly weaker
than those in the first summability theorem especially for locally supported  j .

Disjoint supports

Assume that the  j have disjoint supports.

Then with � = r
2 , we choose

!j := min
x2D

a(x) - r
2

| j (x)|
> 1.

so that
P

j�1!j | j |  a - � holds.

We have

bj := !
-1
j =

| j (x)|

a(x) - r
2


k jkL1

R - r
2

.

Thus in this case, our result gives for any 0 < q < 1,

(k jkL1 )j�1 2 `q(N) =) (kt⌫kV )⌫2F 2 `p(F),

with 1
q = 1

p - 1
2 .

Similar improved results if the  j have supports with limited overlap, such as wavelets.

No improvement in the case of globally supported functions, such as Fourier bases.



Other models

Model 1 : same PDE but no a�ne dependence, e.g. a(x , y) = a(x) + (
P

j�0 yj j (x))2.
Assuming that a(x) � r > 0 guarantees ellipticity uniformly over y 2 Y .

Model 2 : similar problems + non-linearities, e.g.

g(u) - div(aru) = f on D = D(y) u|@D = 0,

with same assumptions on a and f . Well-posedness in V = H1
0 (D) for all f 2 V 0 is

ensured for certain nonlinearities, e.g. g(u) = u3 of u5 in dimension m = 3 (V ⇢ L6).

Model 3 : PDE’s on domains with parametrized boundaries, e.g.

-�v = f on D = Dy u|@D = 0.

where the boundary of Dy is parametrized by y , e.g.

Dy := {(x1, x2) 2 R2 : 0 < x1 < 1 and 0 < x2 < b(x1, y)},

where b = b(x , y) = b(x) +
P

j yj j (x) satisfies 0 < r < b(x , y) < R. We transport

this problem on the reference domain [0, 1]2 and study

u(y) := v(y) � �y , �y : [0, 1]2 ! Dy , �y (x1, x2) := (x1, x2b(x1, y)).

which satisfies a di↵usion equation with coe�cient a = a(x , y) non-a�ne in y .

Polynomial approximation for these models

In contrast to our guiding example (which we refer to as model 0), bounded
holomorphic extension is generally not feasible in a complex domain containing the
polydisc Y = ⌦j�1{|zj |  1}. For this reason,Taylor series are not expected to
converge.

Instead we consider the tensorized Legendre expansion

u(y) =
X

⌫2F
v⌫L⌫(y),

where L⌫(y) :=
Q

j�1 L⌫j (yj ) and (Lk )k�0 are the Legendre polynomials normalized in

L2
⇣
[-1, 1], dt

2

⌘
.

Thus (L⌫)⌫2F is an orthonormal basis for L2(Y ,V , ⇢) where ⇢ := ⌦j�1
dyj
2 is the

uniform probability measure and we have

v⌫ =

Z

Y
u(y)L⌫(y)d⇢(y).

We also consider the L1-normalized Legendre polynomials Pk = (1 + 2k)-1/2Lk and
their tensorized version P⌫, so

u(y) =
X

⌫2F
w⌫P⌫(y),

where w⌫ :=
⇣Q

j�1(1 + ⌫j )1/2
⌘
v⌫.



Main result

Chkifa-Cohen-Schwab (2014) : For models 0, 1, 2 and 3, and for any p < 1,

(k jkX )j�1 2 `p(N) =) (kv⌫kV )⌫2F and (kw⌫kV )⌫2F 2 `p(F).

with X = L1 for models 0, 1, 2, and X = W 1,1 for model 3.

By the same application of Stechkin’s argument as for Taylor expansions, best n-term
truncations for the L1 normalized expansion converge rate O(n-s ) in L1(Y ,V )
where s = 1

p - 1.

Best n-term truncations for the L2 normalized expansion converge with rate O(n-r ) in
L2(Y ,V , ⇢) where r = 1

p - 1
2 .

In the particular case of our guiding example, model 0, we can obtain improved
summability results for Legendre expansions, similar to Taylor expansions.

Key ingredient in the proof of the above theorem : estimates of Legendre coe�cients
for holomorphic functions in a “small” complex neighbourhood of Y .

Taylor vs Legendre expansions

In one variable :

- If u is holomorphic in an open neighbourhood of the disc {|z |  b} and bounded by
M on this disc, then the n-th Taylor coe�cient of u is bounded by

|tn | :=

�����
u(n)(0)

n!

�����  Mb-n

- If u is holomorphic in an open neighbourhood of the domain Eb limited by the ellipse
of semi axes of length (b + b-1)/2 and (b - b-1)/2, for some b > 1, and bounded by
M on this domain, then the n-th Legendre coe�cent wn of u is bounded by

|wn |  Mb-n(1 + 2n)�(b), �(b) :=
⇡b

b - 1

b

10−1

b−b

10−1

2

b+b
−1

2

−1



Lognormal parametrization

We assume di↵usion coe�cients are given by

a = exp(b),

with b a random function defined by an a�ne expansion of the form

b = b(y) =
X

j�1

yj j ,

where ( j ) is a given family of functions from L1(D) and y = (yj )j�1 a sequence of
i.i.d. standard Gaussians N (0, 1) variables.

Thus y ranges in Y = RN equipped with the probabilistic structure (Y ,B(Y ), ⇢) where
B(Y ) is the cylindrical Borel ⌃-algebra and ⇢ the tensorized Gaussian measure.

Commonly used stochastic model for di↵usion in porous media.

The solution u(y) is well defined in V for those y 2 Y such that b(y) 2 L1(D), with

ku(y)kV 
1

amin(y)
kf kV 0  exp(kb(y)kL1 )kf kV 0 .

Main theoretical questions

1. Integrability : under which conditions is y 7! u(y) Bochner measurable with values
in V and satifies for 0  k < 1.

kukk
Lk (Y ,V ,⇢)

= E(ku(y)kkV ) < 1,

In view of ku(y)kV  exp(kb(y)kL1 )kf kV 0 , this holds if E(exp(kkb(y)kL1 ) < 1.

2. Approximability : if u 2 L2(Y ,V , ⇢), consider the multivariate Hermite expansion

u =
X

⌫2F
u⌫H⌫, H⌫(y) :=

Y

j�1

H⌫j (yj ) and u⌫ :=

Z

Y
u(y)H⌫(y)d⇢(y)

where F is the set of finitely supported integer sequences ⌫ = (⌫j )j�1.

Best n-term approximation : un =
P
⌫2⇤n

u⌫H⌫, with ⇤n indices of n largest ku⌫kV .

Stechkin lemma : if (ku⌫kV )⌫2F 2 `p(F) for some 0 < p < 2 then

ku - unkL2(Y ,V ,⇢)  Cn-s , s :=
1

p
-

1

2
, C := k(ku⌫kV )⌫2Fk`p



Existing results

Integrability : su�cient conditions for u 2 Lk (Y ,V , ⇢) for all 0  k < 1 are known.

1. Smoothness : Cb 2 C↵(D ⇥ D) for some ↵ > 0 (Charrier).

2. Summability :
P

j�1 k jkL1 < 1 (Schwab-Gittelson-Hoang)

3.
P

j�1 k jk
2-�
L1 k jk

�
C↵ < 1 for some 0 < � < 1 (Dashti-Stuart)

Approximability :

Hoang-Schwab (2014) : for 0 < p  1, if (jk jkL1 ) 2 `p(N) then (ku⌫kV ) 2 `p(F).

Bachmayr-Cohen-DeVore-Migliorati (2017) : let 0 < p < 2 and define
q := q(p) = 2p

2-p > p (or equivalently 1
q = 1

p - 1
2 ). Assume that there exists a positive

sequence ! = (!j )j�1 such that

(!-1
j )j�1 2 `q(N) and sup

x2D

X

j�1

!j | j (x)| < 1.

Then (ku⌫kV )⌫2F 2 `p(F).

Main ingredient in the proof of the main result

1. Relate Hermite coe�cients u⌫ and partial derivatives @µu. Base on 1-d Rodrigues

formula : Hn(t) =
(-1)np

n!

g(n)(t)
g(t) , where g(t) := (2⇡)-1/2 exp(-t2/2). After some

computation this leads to weighted `2 identity for any sequence ! := (!j )j�1.

X

kµk`1r

!2µ

µ!

Z

Y
k@µu(y)k2V d⇢(y) =

X

⌫2F
b⌫ku⌫k

2
V ,

where b⌫ :=
P

kµk`1r

�⌫
µ

�
!2µ.

2. Prove finiteness of left hand side
P

kµk`1r
!2µ

µ!

R
Y k@µu(y)k2V d⇢(y) when

sup
x2D

X

j�1

!j | j (x)| =: K < Cr := r-1/2ln 2.

Use PDE :
R
D a(y)r@µu(y) ·rv = -

P
⌫µ,⌫ 6=µ

�µ
⌫

� R
D  

µ-⌫a(y)r@⌫u(y) ·rv .

3. Derive `p estimate by mean of Hölder’s inequality :

⇣X

⌫2F
ku⌫k

p
V

⌘1/p


⇣X

⌫2F
b⌫ku⌫k

2
V

⌘1/2⇣X

⌫2F
b-q/2
⌫

⌘1/q
.

We prove that the second factor is finite if (!-1
j )j�1 2 `q(N) and r such that 2

r+1 < p.



In summary

The curse of dimensionality can be “defeated” by exploiting both smoothness and
anisotropy in the di↵erent variables.

For certain models, this can be achieved by sparse polynomial approximations.

The way we parametrize the problem, or represent its solution, is crucial.

3. Numerical methods for polynomial approximation



From approximation results to numerical methods

The results so far are approximation results. They say that for several models of
parametric PDEs, the solution map y 7! u(y) can be accurately approximate (with
rate n-s for some s > 0) by multivariate polynomials having n terms.

These polynomials are computed by best n-term truncation of Taylor or Legendre or
Hermite series, but this is not feasible in practical numercial methods.

Problem 1 : the best n-term index sets ⇤n are computationally out of reach. Their
identification would require the knowledge of all coe�cients in the expansion.

Objective : identify non-optimal yet good sets ⇤n.

Problem 2 : the exact polynomial coe�cients t⌫ (or v⌫, w⌫, u⌫) of u for the indices
⌫ 2 ⇤n cannot be computed exactly.

Objective : numerical strategy for approximately computing polynomial coe�cients.

Numerical methods : strategies to build the sets ⇤n

(i) Non-adaptive, based on the available a-priori estimates for the kt⌫kV (or kv⌫kV ,
kw⌫kV , ku⌫kV ). Take ⇤n to be the set corresponding to the n largest such estimates.

(ii) Adaptive, based on a-posteriori information gained in the computation
⇤1 ⇢ ⇤2 ⇢ · · · ⇢ ⇤n · · · .

ν
2

ν
1



Downward closed index sets

For adaptive algorithms it is critical that the index chosen sets are downward closed

⌫ 2 ⇤ and µ  ⌫ =) µ 2 ⇤,

where µ  ⌫ means that µj  ⌫j for all j � 1.

Such sets are also called downward closed (or lower) sets.

The sets corresponding to the n largest coe�cients or estimates are generally not
downward closed, however the same convergence rates established in the
approximation theorems can be proved when imposing such a structure.

If ⇤ is downward closed, we consider the polynomial space

P⇤ = span{y ! y⌫ : ⌫ 2 ⇤} = span{L⌫ : ⌫ 2 ⇤} = span{H⌫ : ⌫ 2 ⇤}

and its V -valued version

V⇤ := {
X

⌫2⇤
v⌫y

⌫ : v⌫ 2 V } = V ⌦ P⇤.

After having selected ⇤n we search for a computable approximation of u in V⇤n .

Non-intrusive strategies to build the polynomial approximation

Based on snapshots u(y i ) where y i
2 Y for i = 1, . . . ,m..

1. Pseudo spectral methods : computation of
P
⌫2⇤n

v⌫L⌫ by quadrature

v⌫ =

Z

Y
u(y)L⌫(y)d⇢(y) ⇡

mX

i=1

wiu(y
i )L⌫(y

i ).

2. Interpolation : with m = n = dim(P⇤n ) search for un = I⇤n u 2 V⇤n such that

un(y
i ) = u(y i ), i = 1, . . . , n.

3. Least-squares : with m � n, search for un 2 V⇤n minimizing

mX

i=1

ku(y i ) - un(y
i )k2V .

4. Underdetermined least-squares : with m < n search for un 2 V⇤n minimizing

mX

i=1

ku(y i ) - un(y
i )k2V + ⇡(un),

where ⇡ is a penalization functional. Compressed sensing : take for ⇡ the (weighted) `1

sum of V -norms of Legendre coe�cients of un (promote sparse solutions).



Advantages of non-intrusive methods

Applicable to a broad range of models, in particular non-linear PDEs.

Adaptive algorithms seem to work well for the interpolation and least squares
approach, however with no theoretical guarantees.

Additional prescriptions for non-intrusive methods :

(i) Progressive : enrichment ⇤n ! ⇤n+1 requires only one or a few new snapshots.

(ii) Stable : moderate growth with n of the norm of the reconstruction operator
(Lebesgue constant in the case of interpolation).

Main issue : how to best choose the point y i ?

In the following we focus on least-squares, for which interesting stability and accuracy
results can be obtained in recent years using random sampling.

4. Least squares methods with random sampling
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General context

Reconstruction of unknown function

u : y 2 Y 7! u(y) 2 R (or V or Vh),

from scattered measurements ui = u(y i ) for i = 1, . . . ,m with y i
2 Y ⇢ Rd .

For notational simplicity we consider scalar valued functions u.

Measurements are costly : one cannot a↵ord to have m >> 1.

Measurements could be noisy : ui = u(y i ) + ⌘i .

Analogies with statistical learning :

Non-parametric regression framework : from a random sample (y i , ui )i=1,...,m with
unknown joint density, approximate y 7! u(y).

Here active learning : the y i are chosen by us (deterministically or randomly).

General questions : how should we sample ? how should we reconstruct ?



Approximability prior

The unknown function u is well approximated from some n-dimensional space Vn

en(u) := min
v2Vn

ku - vk  "(n),

where "(n) is a known bound and where

kvk := kvkL2(Y ,⇢),

with ⇢ a probability measure on Y .

For certain parametric PDEs, one relevant choice is a sparse polynomial space

Vn = P⇤n = span
⌦
y ! y⌫ =

Y

j�1

y
⌫j
j : ⌫ = (⌫j )j�1 2 ⇤n

↵
,

where ⇤n is an index set such that #(⇤n) = n. Suitable choices of ⇤n obtained by
best n-term truncation of L2(Y , ⇢) orthonormal polynomial series provide with rates
"(n) ⇠ n-s that persist when d = 1.

Sample result (Bachmayr-Cohen-DeVore-Migliorati 2015) for the a�ne and lognormal
models : if

P
j�1 j | j | < 1 with (-1

j ) 2 `q , then "(n) ⇠ n-s with s = 1
q .

Objectives

Use the samples {u(y i ) : i = 1, . . . ,m} to reconstruct an approximation un 2 Vn with
certain optimality properties.

Instance optimality : ku - unk  Cen(u) for any u, for some fixed C .

Rate optimality : if en(u)  C0n-s for all n, then ku - unk  C1n-s .

Budget optimality : this shoud be achieved with m ⇠ n samples (up to log factors).

Progressivity : for a given or adaptively selected sequence of space

V0 ⇢ V1 ⇢ · · · ⇢ Vn · · · ,

these objective should be met at each step with a cumulated sampling budget O(n)
(previous samples should be recycled).



Approximating the exact projection

The L2(Y , ⇢)-projection Pnu of u has the accuracy en(u).

It can be either described as

Pnu = argmin
⌦ Z

Y
|u(y) - v(y)|2d⇢(y) : v 2 Vn

↵
,

or

Pnu =
nX

j=1

cjLj , cj :=

Z

Y
u(y)Lj (y)d⇢(y),

where (L1, . . . , Ln) is an orthonormal basis of Vn.

Its exact computation is out of reach =) replace the integrals by a discrete sum

Z

Y
v(y)d⇢(y) ⇡

1

m

mX

i=1

w(y i )v(y i ).

where w is a weight function.

Resulting approximation methods

Least-squares method :

uLS
n := argmin

⌦ 1

m

mX

i=1

w(y i )|u(y i ) - v(y i )|2 : v 2 Vn

↵
.

Pseudo-spectral method :

uPS
n :=

nX

j=1

c̃j Lj , c̃j :=
1

m

mX

i=1

w(y i )u(y i )Lj (y
i ).



Randomized sampling

Draw (y1, . . . , ym) i.i.d. according to a sampling measure d�.

Use weight w such that
w(y)d�(y) = d⇢(y),

and therefore

Z

Y
v(y)d⇢(y) =

Z

Y
w(y)v(y)d�(y) = E

⇣ 1

m

mX

i=1

w(y i )v(y i )
⌘
.

The resulting approximations uLS
n and uPS

n should be compared to u in some
probabilistic sense, for instance E(ku - unk2).

Unweighted choice : w = 1 and d� = d⇢ may lead to suboptimal results.

Optimality can be ensured by an appropriate choice of w and �.

Implementation of the least-squares method

The minimization problem is solved by using a given basis L1, . . . , Ln of Vn and
searching

uLS
n =

nX

j=1

cjLj .

The vector c = (c1, . . . , cn)t is solution to the normal equations

Gc = a,

with G = (Gk,j )k,j=1,...,n and a = (a1, . . . , an)t , where

Gk,j :=
1

m

mX

i=1

w(y i )Lk (y
i )Lj (y

i ) and ak :=
1

m

mX

i=1

w(y i )uiLk (y
i ).

The solution always exists and is unique if G is invertible.

When the y i are random, then G is a random matrix and uLS
n is a random function.

If L1, . . . , Ln is an orthonormal basis of Vn for the L2(Y , ⇢) norm, then E(G) = I.



Instance optimality of the least-square approximation

The approximation uLS
n is the orthogonal projection of u onto Vn for the discrete norm

kvk2m :=
1

m

mX

i=1

w(y i )|v(y i )|2.

Equivalence with the continuous L2(Y , ⇢) norm : the random Grammian

G = (Gk,j ) :=
⇣ 1

m

mX

i=1

w(y i )Lk (y
i )Lj (y

i )
⌘
,

satisfies E(G) = I. In addition,

kG - Ik 
1

2
()

1

2
kvk2  kvk2m 

3

2
kvk2, v 2 Vn,

where kXk is the spectral norm of a matrix X.

When this holds one has

ku-uLS
n k

2
 en(u)

2+kPnu-uLS
n k

2
 en(u)

2+2kPnu-uLS
n k

2
m  en(u)

2+2ku-Pnuk
2
m,

and E(ku - Pnuk2m) = en(u)2 =) instance optimality.

By convention, we set uLS
n = 0 in the event where kG - Ik �

1
2 .

The key ingredient to our analysis

Let L1, . . . , Ln be an orthonormal basis of Vn for the L2(Y , ⇢) norm. We introduce

kn,w (y) := w(y)
nX

j=1

|Lj (y)|
2,

and

Kn,w := kkn,wkL1 = sup
y2Y

w(y)
nX

j=1

|Lj (y)|
2.

Both are independent on the choice orthonormal basis : only depends on (Vn, ⇢,w).

Since
R
Y kn,wd� =

Pn
j=1 kLjk

2 = n, one has

Kn,w � n.

In the case w = 1, we obtain the inverse Christo↵el function kn(y) :=
Pn

j=1 |Lj (y)|
2,

which is the diagonal of the orthogonal projection kernel onto Vn, and such that

Kn := kknkL1 = max
v2Vn

kvk2L1

kvk2
.



Deviation of G from I : a concentration bound

Theorem (Cohen-Migliorati 2017, Doostan-Hampton 2015) :

Let 0 < " < 1 be arbitrary. Under the condition

Kn,w  c
m

log(2n/")
, c :=

2 log(3/2) - 1

2
,

one has the deviation bound

Pr
⌦
kG - Ik �

1

2

↵
 ".

We set uLS
n = 0 when kG - Ik �

1
2 , and obtain the instance optimality bound

E(ku - uLS
n k

2)  3en(u)
2 + "kuk2.

Typical choice : take " = n-r for r > 0 larger than the decay rate of en(u) if known.

Gives stability condition Kn,w <
⇠

m
log n , which imposes at least the regime m>

⇠ n log n,

but can be much more demanding if Kn,w >> n.

Where does the stability condition comes from

We may write

G =
1

m

mX

i=1

Xi ,

where Xi are i.i.d. copies of the n ⇥ n rank one random matrix

X = w(y)(Lk (y)Lj (y))j,k=1,...,n,

with y distributed according to �, which has expectation E(X) = I.

Matrix Cherno↵ bound (Ahlswede-Winter 2000, Tropp 2011) : if kXk  K a.s., then

Pr
⌦���

1

m

mX

i=1

Xi - E(X)
��� � �

↵
 2n exp

⇣
-
mc(�)

K

⌘
,

where c(�) := (1 + �) log(1 + �) - � > 0 (in particular c( 12 ) := c = 3 log(3/2)-1
2 ).

Here K = supy2Y w(y)
Pn

j=1 |Lj (y)|
2 = Kn,w .

Therefore Kn,w  c m
log(2n/") =) Pr{kG - Ik �

1
2 }  ".



5. The Christo↵el function and the sampling budget

The unweighted case w = 1

The stability regime is described by the condition Kn = kknkL1 <
⇠

m
log n .

We can estimate the inverse Christo↵el function kn(y) =
Pn

j=1 |Lj (y)|
2 in cases of

practical interest.

A simple example : Y = [-1, 1] and Vn = Pn-1 the univariate polynomials.

(i) Distribution ⇢ = dy

⇡
p

1-y2
: the Lj are the Chebychev polynomials and Kn = 2n + 1.

Up to log factors, the stability regime is m>
⇠ n.

(ii) Uniform distribution ⇢ = dy
2 : the Lj are normalized Legendre polynomials and

Kn =
Pn

j=1(2j - 1) = n2. Up to log factors, the stability regime is m>
⇠ n2.

These regimes are confirmed numerically.



Illustration

Regime of stability : probability that (G)  3, white if 1, black if 0.

Left for ⇢ = dy

⇡
p

1-y2
, center : for ⇢ = dy

2 (with m/ log(m) on x axis, n on y axis).

Right : the gaussian case Y = R and ⇢ = g(y)dy , where g(y) := 1p
2⇡

e-y2/2, for

which the Lj are the Hermite polynomials.

The unweighted theory cannot handle this case since Kn = 1

A more ad-hoc analysis shows that stability holds if m>
⇠ exp(cn) and this regime is

observed numerically.

Other examples

Local bases : Let Vn be the space of piecewise constant functions over a partition Pn

of Y into n cells. An orthonormal basis is given by the functions ⇢(T )-1/2�T .

If the partition is uniform with respect to ⇢, i.e. ⇢(T ) = 1
n for all T 2 Pn, then

Kn = n.

Trigonometric system : with ⇢ the uniform measure on a torus, since Lj is the complex
exponential, one has Kn = n.

Spectral spaces on Riemannian manifolds : let M be a compact Riemannian manifold
without boundary and let Vn be spanned by the n first eigenfunctions Lj of the
Laplace-Beltrami operator. Then under mild assumptions (doubling properties and
Poincaré inequalities), Kn = O(n) (estimation based on analysis of the Heat kernel in
Dirichlet spaces by Kerkyacharian and Petrushev).

Such spaces are therefore well suited for stable least-squares methods. Example :
spherical harmonics. Note that individually the eigenfunctions do not satisfy
kLjkL1 = O(1).



Application to acoustic sampling

The unknown function u satisfies the Helmholtz equation

�u + �2u = 0,

over Y ⇢ R2 with unknown boundary condition, and where the spatial frequency � is
linked with with the considered temporal frequency !.

Vekua theory : u belongs to the space V� generated by the plane waves

ek (y) = eik·y , k 2 R2 such that |k | = �,

which are particular solutions of �v + �2v = 0 over R2.

λ

Angular discretization : we perform least-squares in the m dimensional space

Vn := Span{y 7! ek (y) : k := �(cos(2j⇡/n), sin(2j⇡/n)), j = 0, . . . , n - 1}.

Hipmair-Perugia-Moiola (2010) :if u belongs to the Sobolev space Hp ,

inf
v2Vn

ku - vkL2  Cpn
-p

kvkHp .

Fast decay of the approximation error with the number n of plane waves when u is a
smooth solution of Helmholtz equation.

Chardon-Cohen-Daudet (2013) : for this space Vn and if Y is a disk, one has

Kn ⇠ n2,

if ⇢ = dy
|Y |

is the uniform measure over Y , and

Kn ⇠ n,

if ⇢ = (1 - ↵) dy
|Y |

+ ↵ ds
|@Y |

combination of the uniform measures over Y and over its

boundary @Y : distributing part of the microphones along the boundary improves the
trade-o↵ between the number of microphones and the quality of approximation.



Experimental result

↵ : proportion of microphones on the boundary
L : number of plane waves (= n = dim(Vn))
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High dimensions : parametric PDE’s

Prototype example : elliptic PDE’s on some domain D ⇢ R2 or R3 with a�ne
parametrization of the di↵usion function by y = (y1, . . . , yd ) 2 Y = [-1, 1]d

-div(aru) = f , a = ā +
dX

j=1

yj j ,

with ellipticity assumption 0 < r < a < R for all y 2 Y , so y 7! u(y) 2 V = H1
0 (D).

With ⇤ ⇢ Nd , approximation by multivariate polynomial space

V⇤ :=

8
<

:
X

⌫2⇤
v⌫y

⌫, v⌫ 2 V

9
=

; = V ⌦ P⇤,

where y⌫ = y⌫11 · · · y⌫dd .

We consider downward closed index sets : ⌫ 2 ⇤ and µ  ⌫ ) µ 2 ⇤.

Basis of P⇤ : tensorized orthogonal polynomials L⌫(y) =
Qd

j=1 L⌫j (yj ) for ⌫ 2 ⇤.



Downward closed multivariate polynomials
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Breaking the curse of dimensionality

Cohen-DeVore-Schwab (2011) + Bachmayr-Migliorati (2017) : approximation results.

Under suitable summability conditions on (| j |)j�1, there exists a sequence of
downward closed sets ⇤1 ⇢ ⇤2 ⇢ · · · ⇢ ⇤n . . . , with n := #(⇤n) such that

inf
v2Vn

ku - vkL2(Y ,V ,⇢)  Cn-s ,

with Vn := V⇤n , where ⇢ is any tensorized Jacobi measures. The exponent s > 0 is
robust with respect to the dimension d .

Chkifa-Cohen-Migliorati-Nobile-Tempone (2015) : estimate Kn for P⇤n .

With d⇢ = ⌦
d ( dx2 ) the uniform distribution over Y , one has Kn  n2 for all downward

closed sets ⇤n such that #(⇤n) = n. Up to log factors, the stability regime is m>
⇠ n2.

With the tensor-product Chebychev measure, improvement Kn  n↵ with ↵ := log 3
log 2 .

The theory and least-square method is not capable of handling lognormal di↵usions :

a = exp(b), b =
dX

i=1

yj j , yj ⇠ N (0, 1) i.i.d.

which corresponds to the tensor product Gaussian measure over Y = Rd .



6. Weighted least-squares methods and optimal sampling

The optimal measure

In the weighted least-square method, we sample according to d� such that d⇢ = wd�.

The stability condition is Kn,w <
⇠

m
log n , where Kn,w := supy2Y w(y)kn(y).

The quantity Kn,w is minimized by the choice

d�(y) =

Pn
j=1 |Lj (y)|

2

n
d⇢(y) and w(y) =

n
Pn

j=1 |Lj (y)|
2

which yields
Kn,w = n.

Therefore, up to log factors, the stability regime is m>
⇠ n independently of ⇢.

We thus obtain instance optimality with an optimal sampling budget.

Note that � = �n = �(Vn, ⇢) changes with n : issue for progressivity.

Sampling according to d�n can be non-trivial, especially in high dimension.



Illustration

We take Vn = Pn univariate polynomials of degree n on Y = [-1, 1]

Plot : Pr((G)  3) (white if 1, black if 0) with m/ log(m) on x axis, n on y axis.

Left : d⇢ = dy

⇡
p

1-y2
. Center : d⇢ = dy

2 . Right : d⇢ = (2⇡)-1/2 exp(-y2/2) on Y = R.

Unweighted case : sampling budget m>
⇠ n, m>

⇠ n2, m>
⇠ exp(n).

Optimal weighting : sampling budget m>
⇠ n.

Sampling the optimal density

The optimal sampling measure � now depends on Vn :

d� = d�n =
kn
n
d⇢ =

1

n

⇣ nX

j=1

|Lj |
2
⌘
d⇢.

In the case of parametric PDEs approximated with multivariate polynomials, d⇢ is a
product measure (easy to sample), but d�n is not.

Sampling strategies :

(i) Monte Carlo Markov Chain (MCMC) : generate by simple recursive rules a sample
such that the the probability distribution asymptotically approaches d�n.

(ii) Conditional sampling : obtains first component by sampling the marginal d�1(y1),
then the second component by sampling the conditional marginal probability d�y1 (y2)
for this choice of the first component, etc...

(iii) Mixture sampling : draw uniform variable j 2 {1, . . . , n}, then sample with
probability |Lj |2d⇢.

Strategies (ii) and (iii) are more e�cient on our cases of interests where the Lj have
tensor product structure.



Pseudo-spectral methods

Optimal sampling measure helps : Wozniakowski-Wasilkowski (2006), Krieg (2017)

We have

kPnu - uPS
n k

2 =
nX

j=1

|cj - c̃j |
2, c̃j :=

1

m

mX

i=1

w(y i )L(y i )u(y i ).

Variance analysis

E(|cj - c̃j |
2) =

1

m
Var(w(y)Lj (y)u(y)) 

1

m

Z

Y
|w(y)|2|Lj (y)|

2|u(y)|2d�(y),

and therefore

E(kun - uPS
n k

2) 
1

m

Z

Y
w(y)

⇣ nX

j=1

|Lj (y)|
2
⌘
|u(y)|2d⇢(y).

Therefore, when using the optimal sampling measure, one finds that

E(kPnu - uPS
n k

2) 
n

m
kuk2.

Multilevel strategy

For l = 0, 1, . . . , L set nl := 2l . Assume unl-1 2 Vnl-1 has been constructed.

Draw y1, . . . , yml according to the measure �nl with ml = ✓nl for some ✓ > 1.

Then define unl 2 Vnl by

unl = unl-1 +

nlX

j=1

c̃j Lj , c̃j :=
1

ml

mlX

i=1

w(y i )L(y i )(u(y i ) - unl-1 (y
i )).

One then has

E(ku - unLk
2)  ku - PnLuk

2 +
nl
ml

E(ku - unL-1k
2) = enL (u)

2 + ✓-1E(ku - unL-1k
2)

and we obtain by recursion E(ku - unLk
2) 

PL
l=0 ✓

l-Lenl (u)
2 + ✓-L-1E(kuk2).

Assuming rate en(u)  Cn-s and taking ✓ > 22s we retrieve rate optimality.

The sampling budget is optimal : m0 + · · · +mL  2✓nL.

Recent work by D. Krieg : instance optimality achievable if en(u) is known.

General defect : dimension nl grows geometrically.



Adaptivity

Update adaptively the polynomial space ⇤n-1 ! ⇤n, while increasing the amount of
sample necessary for stability m = m(n) ⇠ n log n.

ν
2

ν
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Problem : the optimal measure � = �n changes as we vary n. How should we recycle
the previous samples ?

For certain simple cases �n ⇠ �⇤ as n !1 (equilibrium measure for univariate
polynomials on [-1, 1]). But no such asymptotic in general cases.

Example

Sampling densities �n for n = 5, 10, 20.
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Left : Hermite polynomials of degrees 0, . . . ,m - 1 and ⇢ standard Gaussian.

Right : Haar wavelets selected by random tree refinement and ⇢ uniform.



Sequencial sampling

Observe that

d�n =
1

n

⇣ nX

j=1

|Lj |
2
⌘
d⇢ =

⇣
1 -

1

n

⌘
d�n-1 +

1

n
d⌫n where d⌫n = |Ln |

2d⇢.

We use this mixture property to generate the sample in an incremental manner.

Assume that the sample Sn-1 = {y1, . . . , ym(n-1)} have been generated by independent
draw according to the distribution d�n-1.

Then we generate a new sample Sn = {y1, . . . , ym(n)} as follows :

For each i = 1, . . . ,m(n), pick Bernoulli variable bi 2 {0, 1} with probability { 1n , 1-
1
n }.

If bi = 0, generate y i according to d⌫n.

If bi = 1, pick xi incrementally inside Sn-1. If Sn-1 has been exhausted generate y i

according to d�n-1.

Optimality of the sequencial sampling algorithm

Arras-Bachmayr-Cohen-Migliorati (2018) : the total number of sample Cn used at
stage n satisfies E(Cn) ⇠ n log(n) and Cn<⇠ n log(n) with high probability for all values
of n. With high probability, the matrix G satisfies (G)  3 for all values of n.

Example : hermite polynomials and Gaussian measure).

10 20 30 40 50
m

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

�
(G

m
)

10 20 30 40 50
m

1.0

1.2

1.4

1.6

1.8

C
m

/n
�(

m
)

2.5% / 97.5% quantile

5% / 95% quantile

10% / 90% quantile

maximum/minimum

mean

Left : Condition number (G)

Right : Ratio between total sampling cost Cn and m(n) ⇠ n log n.

Alternative strategy (Giovanni Migliorati) : use a deterministic mixture.



Conclusions

Appropriate sampling yields optimal non-intrusive methods under the regime m ⇠ n.

Applicable to any measure ⇢ and spaces Vn, in any dimension.

Optimality can be preserved in a sequencial framework.

Convergence results are in expectation.

Perspectives

Similar convergence results with high probability ?

Convergence results in the uniform sense ?

Adaptive weighted least-squares strategies for the selection of index sets ⇤n.

Cases where the Lj and �n are not easily computable, e.g. for a general domain Y .

Extend the optimal sampling measure theory to more general sensing systems.
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