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Designing DPG methods

The game is to reformulate boundary value problems into operator
equations Bx = ` where B : X → Y ∗ is a continuous linear operator and

‖ · ‖Y ∗ is locally and easily approximable.
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Recall one of the definitions of the DPG method

Exact problem: Given Hilbert spaces X and Y , a continuous linear
operator B : X → Y ∗ and an ` ∈ Y ∗, solve for x in X satisfying

Bx = `.

Discretization: Pick finite dimensional subspaces Xh ⊂ X and Yh ⊂ Y
and compute

xh = arg min
zh∈Xh

‖`− Bzh‖Y ∗h .

When Yh admits functions without interelement continuity, we call this the
DPG method. [G+Demkowicz 2011]

Relatives:

FOSLS (Y = L2) [Cai+Lazarov+Manteuffel+McCormick 1994]

Negative-norm least-squares (Y = H1
0 ) [Bramble+Lazarov+Pasciak 1997]
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In what norm will you minimize?
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Experiment: Simulate a plane
wave propagating at θ = π/8.

Apply DPG minimization in a
relaxed graph norm where L2

terms are scaled by ε.

Dissipation→ 0 as ε→ 0.
[Nicole Olivares 2016] dissertation.
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Computational feasibility

Interesting DPG methods arise when
Yh has a basis whose Gram matrix is easy to invert.

‖ · ‖Y ∗h is easily
computable.

Th is easily
computable.

eh is easily
condensed out.

xh = arg min
zh∈Xh

‖`− Bzh‖Y ∗h .

b(xh, y) = `(y), y ∈ Th(Xh).

Test space Th(Xh) is determined by solving
(Thz , y)Y = b(z , y) for all y ∈ Yh and z ∈ Xh.

(eh, y)Y + b(xh, y) = `(y), ∀y ∈ Yh,

b(zh, eh) = 0, ∀zh ∈ Xh.
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Recall the 3 assumptions

Let b(x , y) = (Bx)(y), the sesquilinear form on X × Y generated by B.

Assumption [U] Uniqueness

{y ∈ Y : b(x , y) = 0 for all x ∈ X} = {0}.

Assumption [I] Inf-Sup

∃c1 > 0 : ∀x ∈ X , c1‖x‖X ≤ sup
06=y∈Y

|b(x , y)|
‖y‖Y

≤ ‖b‖ ‖x‖X .

Assumption [F] Fortin Operator

∃ continuous linear Π : Y → Yh such that

b(zh, y −Πy) = 0 for all zh ∈ Xh, y ∈ Y .
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Example: A new weak form for the old Laplacian

Find u:

{
−∆u = f , on Ω,

u = 0, on ∂Ω.

Let Ωh be a mesh of Ω and K ∈ Ωh be a mesh element. Then∫
K
grad u · grad v −

∫
∂K

(n · grad u)v =

∫
K
f v .

∑
K∈Ωh

[∫
K
grad u · grad v −

∫
∂K

n · q̂ v

]
=

∫
Ω
f v .

This allows test function v ∈ Y to be in a “broken” Sobolev space

Y = H1(Ωh) :=
∏

K∈Ωh

H1(K ).
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Primal DPG formulation for Dirichlet problem

b( (u, q̂ · n), v) =
∑
K∈Ωh

[∫
K
grad u · grad v −

∫
∂K

q̂ · n v

]

= (grad u, grad v)h − 〈q̂ · n, v〉h

Y = H1(Ωh)

X = H1
0 (Ω)× Qdiv

Definition (of Qdiv, the space where numerical flux q̂ · n lies)

Define the element-by-element trace operator trn by

trn : H(div, Ω)→
∏

K∈Ωh

H−1/2(∂K ), trn r |∂K = r · n|∂K .

Set Qdiv = range of trn. It is complete under the norm

‖q̂ · n‖Qdiv = inf
r∈trn−1{q̂·n}

‖r‖H(div,Ω).
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Broken and Unbroken forms

Broken form

b( (u, q̂ · n), v) = (grad u, grad v)h︸ ︷︷ ︸
b0(u,v)

+ 〈−q̂ · n, v〉h︸ ︷︷ ︸
b̂(q̂·n,v)

Y = H1(Ωh)

X = H1
0 (Ω)× Qdiv

Unbroken form

b0(u, v) = (grad u, grad v)

Stability of the unbroken form on H1
0 (Ω)× H1

0 (Ω) is standard.
Stability of broken form?
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Abstracting the structure

Suppose we have two further Hilbert spaces X0 and X̂ such that:

Abstract setting:

b0 : X0 × Y → C is sesquilinear and
continuous

b̂ : X̂ × Y → C is sesquilinear and
continuous

X = X0 × X̂ .

b( (x , x̂), y) = b0(x , y) + b̂(x̂ , y)

Y0 = {y ∈ Y : b̂(x̂ , y) = 0, ∀x̂ ∈ X̂}

Dirichlet example:

X0 = H1
0 (Ω), X̂ = Qdiv,

Y = H1(Ωh)

b0(u, v) =
(grad u, grad v)

b̂(q̂ · n, v) = 〈−q̂ · n, v〉h

b( (u, q̂ · n), v)
= (grad u, grad v)h
−〈q̂ · n, v〉h

Y0 = H1
0 (Ω).
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From standard to broken forms: An abstract result

Assumption [H] Hybrid form

∃ ĉ > 0 : ĉ ‖x̂‖X̂ ≤ sup
y∈Y

|b̂(x̂ , y)|
‖y‖Y

∀x̂ ∈ X̂ .

Theorem (Stability of unbroken form =⇒ Stability of broken form)

Suppose Assumption [H] holds. Then

[U + I] holds for

b0 on X0 × Y0

}
=⇒

{
[U + I] holds for

b = b0 + b̂ on X × Y

[Carstensen+Demkowicz+G 2015]
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Example: Maxwell cavity problem

Assuming all time variations are harmonic (e−ıωt), the electric (E ) and
magnetic (H) fields satisfy

ıωµH − curlE = 0 on Ω

ıωεE + curlH = J on Ω

n × E = 0 on ∂Ω.

Find E:

{
curlµ−1 curlE − ω2εE = ıωJ, on Ω

n × E = 0, on ∂Ω.

If ω is not a cavity resonance, then this problem is wellposed.
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Deriving broken and unbroken formulation

Unbroken (standard) formulation

Integrate by parts on Ω:

Find E ∈ H0(curl, Ω) satisfying

(µ−1 curlE , curlF )− ω2(εE ,F )︸ ︷︷ ︸
b0(E ,F )

= (f ,F )

for all F ∈ H0(curl, Ω).

Broken formulation Integrate by parts element by element:

∫
Ω
µ−1 curlE · curlF − ω2εE · F +

∫
∂Ω

n × µ−1curlE · F = 0
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Primal DPG formulation for the Maxwell problem

b( (E , n × Ĥ),F ) = (µ−1 curlE , curlF )h − ω2(εE ,F ) + ıω〈n × Ĥ,F 〉h
Y = H(curl, Ωh) :=

∏
K∈Ωh

H(curl,K ), X = H0(curl, Ω)× Qcurl

Definition (of Qcurl, the space where n × Ĥ lies)

Define the element-by-element trace operator tr× by

tr× : H(curl, Ω)→
∏

K∈Ωh

H−1/2(div, ∂K ), tr× F |∂K = n × F |∂K .

Qcurl = range(tr×), normed by ‖n × F̂‖Qcurl = inf
G∈tr×−1{n×F̂}

‖G‖H(curl,Ω).
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Fitting to the previous abstract structure

Abstract setting:

b0 : X0 × Y → C is sesquilinear and
continuous

b̂ : X̂ × Y → C is sesquilinear and
continuous

X = X0 × X̂

b( (x , x̂), y) = b0(x , y) + b̂(x̂ , y)

Y0 ={y ∈ Y : b̂(x̂ , y) = 0, ∀x̂ ∈ X̂}

Maxwell example:

X0 = H0(curl, Ω), X̂ = Qcurl,

Y = H(curl, Ωh)

b0(E ,F )=(µ−1curlE , curlF )h
−ω2(εE ,F )

b̂(n × Ĥ,F ) = ıω〈n × Ĥ,F 〉h

Y0 = H0(curl, Ω).
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X = X0 × X̂

b( (x , x̂), y) = b0(x , y) + b̂(x̂ , y)

Y0 ={y ∈ Y : b̂(x̂ , y) = 0, ∀x̂ ∈ X̂}

Maxwell example:

X0 = H0(curl, Ω), X̂ = Qcurl,

Y = H(curl, Ωh)

b0(E ,F )=(µ−1curlE , curlF )h
−ω2(εE ,F )

b̂(n × Ĥ,F ) = ıω〈n × Ĥ,F 〉h

Y0 = H0(curl, Ω).

Jay Gopalakrishnan 16/32



Fitting to the previous abstract structure

Abstract setting:

b0 : X0 × Y → C is sesquilinear and
continuous

b̂ : X̂ × Y → C is sesquilinear and
continuous

X = X0 × X̂

b( (x , x̂), y) = b0(x , y) + b̂(x̂ , y)

Y0 ={y ∈ Y : b̂(x̂ , y) = 0, ∀x̂ ∈ X̂}

Maxwell example:

X0 = H0(curl, Ω), X̂ = Qcurl,

Y = H(curl, Ωh)

b0(E ,F )=(µ−1curlE , curlF )h
−ω2(εE ,F )
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Recall the abstract result

Assumption [H] Hybrid form

∃ ĉ > 0 : ĉ ‖x̂‖X̂ ≤ sup
y∈Y

|b̂(x̂ , y)|
‖y‖Y

∀x̂ ∈ X̂ .

Theorem (Stability of unbroken form =⇒ Stability of broken form)

Suppose Assumption [H] holds. Then

[U + I] holds for

b0 on X0 × Y0

}
=⇒

{
[U + I] holds for

b = b0 + b̂ on X × Y
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Analysis of broken Maxwell and Laplace forms

The last theorem reduces analysis of wellposedness to verification of [H].

[U+I] for broken Maxwell form will follow if [H] is proved:

inf
H∈tr×−1{n×Ĥ}

‖H‖H(curl,Ω) =

‖n × Ĥ‖Qcurl ≤
1

ĉ
sup

F∈H(curl,Ωh)

|〈n × Ĥ,F 〉h|
‖F‖H(curl,Ωh)

[U+I] for broken Dirichlet form will follow if [H] is proved:

inf
r∈trn−1{q̂·n}

‖r‖H(div,Ω) =

‖n · q̂‖Qdiv ≤
1

ĉ
sup

v∈H1(Ωh)

|〈q̂ · n, v〉h|
‖v‖H1(Ωh)
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Interface (inf=sup) lemma

Lemma [Carstensen+Demkowicz+G 2015]

inf
F∈tr×−1{n×Ĥ}

‖F‖H(curl,Ω) = sup
F∈H(curl,Ωh)

|〈n × Ĥ,F 〉h|
‖F‖H(curl,Ωh)
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inf
F∈tr×−1{n×Ĥ}

‖F‖H(curl,Ω) = sup
F∈H(curl,Ωh)

|〈n × Ĥ,F 〉h|
‖F‖H(curl,Ωh)

Interpreting the lemma for a one element mesh:

Two types of traces of F ∈ H(curl,K ) on one element boundary:

tr× F = n × F |∂K , tr> F = (n × F )× n|∂K .

Range(tr×) = H−1/2(div, ∂K ). Range(tr>) = H−1/2(curl, ∂K ).

Lemma =⇒ the inf = ‖n × Ĥ‖H−1/2(div,∂K) = the sup =

= sup
F>∈H−1/2(curl,∂K)

|〈n × Ĥ,F>〉h|
‖F>‖H−1/2(curl,∂K)

= ‖n × Ĥ‖[H−1/2(curl,∂K)]∗ .
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Interface (inf=sup) lemma

Lemma [Carstensen+Demkowicz+G 2015]

inf
F∈tr×−1{n×Ĥ}

‖F‖H(curl,Ω) = sup
F∈H(curl,Ωh)

|〈n × Ĥ,F 〉h|
‖F‖H(curl,Ωh)

=⇒ The lemma, on one element K , says that the norms of

H−1/2(div, ∂K ) and [H−1/2(curl, ∂K )]∗ are equal.
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Interface (inf=sup) lemma

Lemma [Carstensen+Demkowicz+G 2015]

inf
F∈tr×−1{n×Ĥ}

‖F‖H(curl,Ω) = sup
F∈H(curl,Ωh)

|〈n × Ĥ,F 〉h|
‖F‖H(curl,Ωh)

Proof:

Given n × Ĥ on element boundary ∂K , solve these:

Find H ∈ H(curl,K ):{
n × H = n × Ĥ, on ∂K ,
curl curlH + H = 0, in K .

Find G ∈ H(curl,K ):{
n × curlG = n × Ĥ, on ∂K ,
curl curlG + G = 0, in K .

One is related to the “inf” and the other is related to the “sup”. . .
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Proof (continued)

Find H ∈ H(curl,K ):{
n × H = n × Ĥ, on ∂K ,
curl curlH + H = 0, in K .

Find G ∈ H(curl,K ):{
n × curlG = n × Ĥ, on ∂K ,
curl curlG + G = 0, in K .

‖H‖H(curl,K) = inf
F∈tr×−1{n×Ĥ}

‖F‖H(curl,K) =: INF .

‖G‖H(curl,K) = sup
F∈H(curl,K)

|(curlG , curlF )K + (G ,F )K |
‖F‖H(curl,K)

= sup
F∈H(curl,K)

|〈n × Ĥ,F 〉|
‖F‖H(curl,K)

=: SUP.

Now, H = curlG and ‖H‖H(curl,K) = ‖G‖H(curl,K) =⇒ INF = SUP. �
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|〈n × Ĥ,F 〉|
‖F‖H(curl,K)

=: SUP.

Now, H = curlG and ‖H‖H(curl,K) = ‖G‖H(curl,K) =⇒ INF = SUP. �

Jay Gopalakrishnan 20/32



Summary of the technique

Prove wellposedness (verify [U+I] of the unbroken often standard –
formulation.

Prove an “inf=sup” lemma to verify [H].

Conclude the wellposedness [U+I] of the broken formulation by our
abstract theorem.
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Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:

Ready-made error estimator for spacetime adaptivity.

Previous technique can be used to prove wellposedness.

t

x

A

[
q
µ

]
=

[
∂tq − gradxµ
∂tµ− divxq

]

Adaptive iterate 0
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The lemma’s idea can extended far

Find H ∈ H(curl,K ):{
n × H = n × Ĥ, on ∂K ,
curl curlH + H = 0, in K .

Find H ∈W (K ) :{
DH = q̂, on ∂K ,
A∗AH + H = 0, in K .

Find G ∈ H(curl,K ):{
n × curlG = n × Ĥ, on ∂K ,
curl curlG + G = 0, in K .

Find G ∈W ∗(K ):{
DA∗G = q̂, on ∂K ,
AA∗ G + G = 0, in K .

[Au]i = ∂α(aijαuj). Operator A generalizes curl.

W (K) = {u ∈ L2 : Au ∈ L2}. W (K) generalizes H(curl,K).

〈Dw ,w∗〉W∗ = (Aw ,w∗)− (w ,A∗w∗). D generalizes n × ·|∂K .

INF = SUP
(for much more general operators)

[Demkowicz+G+Nagaraj+Sepulveda 2017]
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Next

1 The importance of Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

2 ”Broken” forms for Laplace & Maxwell equations . . . . . . . . . . . . . . . .!

3 Verification of [U+I] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

4 Verification of [F]
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Recall the third assumption

Assumption [U] Uniqueness

{y ∈ Y : b(x , y) = 0 for all x ∈ X} = {0}.

Assumption [I] Inf-Sup

∃c1 > 0 : ∀x ∈ X , c1‖x‖X ≤ sup
06=y∈Y

|b(x , y)|
‖y‖Y

≤ ‖b‖ ‖x‖X .

Assumption [F] Fortin Operator

∃ continuous linear Π : Y → Yh such that

b(zh, y −Πy) = 0 for all zh ∈ Xh, y ∈ Y .
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Example: Discrete spaces for 3D Laplace case

b( (u, q̂ · n), v) = (grad u, grad v)h − 〈q̂ · n, v〉h
Y = H1(Ωh)

X = H1
0 (Ω)× Qdiv

Given an Xh, we want a discrete space Yh satisfying Assumption [F]:

0 = b( (wh, r̂h · n), v −Πv)

= −(∆wh, v −Πv)h + 〈n · gradwh − r̂h · n, v −Πv〉h.

If degree(wh|K ) ≤ p + 1 and degree(r̂h · n) ≤ p, then moment conditions

(Pp−1(K ),v −Πv)K = 0 (needed for Laplace example)

〈n · Rp+1(K ),v −Πv〉∂K= 0 (needed for Laplace example)

are sufficient.
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Fortin operators with moment conditions

For Maxwell, and other applications, we need continuous linear operators

Πgrad
p+3 : H1(K )→ Pp+3(K ),

Πcurl
p+3 : H(curl,K )→ Np+3(K ),

Πdiv
p+3 : H(div,K )→ Rp+3(K ),

satisfying these moment conditions on a tetrahedral element:

(Pp−1(K ), Πgrad
p+3 v − v)= 0 (needed for Laplace example)

〈n · Rp+1(K ), Πgrad
p+3 v − v〉= 0 (needed for Laplace example)

(Pp(K )3,Πcurl
p+3E − E ) = 0

〈n × Pp+1(K )3,Πcurl
p+3E − E 〉= 0

(Pp+1(K )3,Πdiv
p+3τ − τ) = 0

〈n Pp+2(K ),Πdiv
p+3τ − τ〉 = 0
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Fortin operators with moment conditions

Theorem [Carstensen+Demkowicz+G 2015]

On any tetrahedron K , there are continuous linear operators

Πgrad
p+3 : H1(K )→ Pp+3(K ),

Πcurl
p+3 : H(curl,K )→ Np+3(K ),

Πdiv
p+3 : H(div,K )→ Rp+3(K ),

such that the diagram

H1(K )/R grad−−−−→ H(curl,K )
curl−−−−→ H(div,K )

div−−−−→ L2(K )yΠgrad
p+3

yΠcurl
p+3

yΠdiv
p+3

yΠp+2

Pp+3(K )/R grad−−−−→ Np+3(K )
curl−−−−→ Rp+3(K )

div−−−−→ Pp+2(K )

commutes and the moment conditions of the previous slide hold.
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The DPG method for the Dirichlet problem

b( (u, q̂ · n), v) = (grad u, grad v)h − 〈q̂ · n, v〉h
Y = H1(Ωh)

X = H1
0 (Ω)× Qdiv

Yh = { y ∈ Y : y |K ∈ Pp+3(K ) }
Xh = { (wh, r̂h · n) ∈ X : wh|K ∈ Pp+1(K ), r̂h|K ∈ Rp+1(K ) }

We have indicated how to verify [U + I + F] in this setting.
Hence a priori and a posteriori error estimates follow.
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The DPG method for the Maxwell problem

b( (E , n × Ĥ),F ) = (µ−1 curlE , curlF )h − ω2(εE ,F ) + ıω〈n × Ĥ,F 〉h
Y = H(curl, Ωh)

X = H(curl, Ω)× Qcurl

Yh = {F ∈ Y : F |K ∈ Np+3(K )}
Xh = {(E , n × Ĥ) ∈ X : E |K ∈ Pp(K )3, Ĥ|K ∈ Pp+1(K )3}

We have indicated how to verify [U + I + F] in this setting.
Hence a priori and a posteriori error estimates follow.
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The DPG method for spacetime problems

Discussed techniques are useful to prove [U + I] also for many
spacetime operators (wave, Schrödinger, etc.)

However, verification of [F] is an open problem for spacetime
operators.
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Conclusion of Lecture 3

1 The importance of Y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!
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