The Discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions: Lecture 3

Leszek Demkowicz \& Jay Gopalakrishnan

The University of Texas at Austin \& Portland State University

Spring school, University of South Carolina, February 2018

Thanks: AFOSR

Outline of Lecture 3

(1) The importance of Y
(2) "Broken" forms for Laplace \& Maxwell equations
(3) Verification of $[\mathbf{U}+\mathrm{I}]$
(9) Verification of [F]

Designing DPG methods

The game is to reformulate boundary value problems into operator equations $B x=\ell$ where $B: X \rightarrow Y^{*}$ is a continuous linear operator and
$\|\cdot\|_{Y^{*}}$ is locally and easily approximable.

Recall one of the definitions of the DPG method

Exact problem: Given Hilbert spaces X and Y, a continuous linear operator $B: X \rightarrow Y^{*}$ and an $\ell \in Y^{*}$, solve for x in X satisfying

$$
B x=\ell .
$$

Discretization: Pick finite dimensional subspaces $X_{h} \subset X$ and $Y_{h} \subset Y$ and compute

$$
x_{h}=\arg \min _{z_{h} \in X_{h}}\left\|\ell-B z_{h}\right\|_{Y_{h}^{*}} .
$$

When Y_{h} admits functions without interelement continuity, we call this the DPG method.
[G+Demkowicz 2011]

Recall one of the definitions of the DPG method

Exact problem: Given Hilbert spaces X and Y, a continuous linear operator $B: X \rightarrow Y^{*}$ and an $\ell \in Y^{*}$, solve for x in X satisfying

$$
B x=\ell .
$$

Discretization: Pick finite dimensional subspaces $X_{h} \subset X$ and $Y_{h} \subset Y$ and compute

$$
x_{h}=\arg \min _{z_{h} \in X_{h}}\left\|\ell-B z_{h}\right\|_{Y_{h}^{*}} .
$$

When Y_{h} admits functions without interelement continuity, we call this the DPG method.

Relatives:

- FOSLS $\left(Y=L^{2}\right) \quad$ [Cai+Lazarov+Manteuffel+McCormick 1994]
- Negative-norm least-squares $\left(Y=H_{0}^{1}\right) \quad$ [Bramble+Lazarov+Pasciak 1997]

In what norm will you minimize?

$$
\varepsilon=1.000000
$$

Experiment: Simulate a plane wave propagating at $\theta=\pi / 8$.

Apply DPG minimization in a relaxed graph norm where L^{2} terms are scaled by ε.

Dissipation $\rightarrow 0$ as $\varepsilon \rightarrow 0$. [Nicole Olivares 2016] dissertation.

In what norm will you minimize?

Experiment: Simulate a plane wave propagating at $\theta=\pi / 8$.

Apply DPG minimization in a relaxed graph norm where L^{2} terms are scaled by ε.

In what norm will you minimize?

$$
\varepsilon=0.010000
$$

Experiment: Simulate a plane wave propagating at $\theta=\pi / 8$.

Apply DPG minimization in a relaxed graph norm where L^{2} terms are scaled by ε.

In what norm will you minimize?

$$
\varepsilon=0.001000
$$

Experiment: Simulate a plane wave propagating at $\theta=\pi / 8$.

Apply DPG minimization in a relaxed graph norm where L^{2} terms are scaled by ε.

Dissipation $\rightarrow 0$ as $\varepsilon \rightarrow 0$. [Nicole Olivares 2016] dissertation.

In what norm will you minimize?

Experiment: Simulate a plane wave propagating at $\theta=\pi / 8$.

Apply DPG minimization in a relaxed graph norm where L^{2} terms are scaled by ε.

Dissipation $\rightarrow 0$ as $\varepsilon \rightarrow 0$. [Nicole Olivares 2016] dissertation.

In what norm will you minimize?

Experiment: Simulate a plane wave propagating at $\theta=\pi / 8$.

Apply DPG minimization in a relaxed graph norm where L^{2} terms are scaled by ε.

Dissipation $\rightarrow 0$ as $\varepsilon \rightarrow 0$. [Nicole Olivares 2016] dissertation.

In what norm will you minimize?

Experiment: Simulate a plane wave propagating at $\theta=\pi / 8$.

Apply DPG minimization in a relaxed graph norm where L^{2} terms are scaled by ε.

Dissipation $\rightarrow 0$ as $\varepsilon \rightarrow 0$. [Nicole Olivares 2016] dissertation.

Computational feasibility

Interesting DPG methods arise when
Y_{h} has a basis whose Gram matrix is easy to invert.

- $\|\cdot\|_{Y_{h}^{*}}$ is easily computable.

$$
x_{h}=\arg \min _{z_{h} \in X_{h}}\left\|\ell-B z_{h}\right\|_{Y_{h}^{*}}
$$

Computational feasibility

Interesting DPG methods arise when
Y_{h} has a basis whose Gram matrix is easy to invert.

- $\|\cdot\|_{Y_{h}^{*}}$ is easily computable.
- T_{h} is easily computable.

$$
\begin{gathered}
x_{h}=\arg \min _{z_{h} \in X_{h}}\left\|\ell-B z_{h}\right\|_{Y_{h}^{*}} . \\
\qquad b\left(x_{h}, y\right)=\ell(y), \quad y \in T_{h}\left(X_{h}\right) . \\
\text { Test space } T_{h}\left(X_{h}\right) \text { is determined by solving } \\
\left(T_{h} z, y\right)_{Y}=b(z, y) \text { for all } y \in Y_{h} \text { and } z \in X_{h} .
\end{gathered}
$$

Computational feasibility

Interesting DPG methods arise when
Y_{h} has a basis whose Gram matrix is easy to invert.

- $\|\cdot\|_{Y_{h}^{*}}$ is easily computable.
- T_{h} is easily computable.

$$
b\left(x_{h}, y\right)=\ell(y), \quad y \in T_{h}\left(X_{h}\right)
$$

Test space $T_{h}\left(X_{h}\right)$ is determined by solving $\left(T_{h} z, y\right)_{Y}=b(z, y)$ for all $y \in Y_{h}$ and $z \in X_{h}$.

- e_{h} is easily condensed out.

$$
\begin{aligned}
\left(e_{h}, y\right)_{Y}+b\left(x_{h}, y\right) & =\ell(y), & & \forall y \in Y_{h} \\
b\left(z_{h}, e_{h}\right) & =0, & & \forall z_{h} \in X_{h} .
\end{aligned}
$$

Recall the 3 assumptions

Let $b(x, y)=(B x)(y)$, the sesquilinear form on $X \times Y$ generated by B.
Assumption [U]
Uniqueness

$$
\{y \in Y: b(x, y)=0 \text { for all } x \in X\}=\{0\}
$$

Assumption [I]
Inf-Sup

$$
\exists c_{1}>0: \quad \forall x \in X, \quad c_{1}\|x\|_{X} \leq \sup _{0 \neq y \in Y} \frac{|b(x, y)|}{\|y\|_{Y}} \leq\|b\|\|x\|_{X}
$$

Assumption [F]
Fortin Operator
\exists continuous linear $\Pi: Y \rightarrow Y_{h}$ such that

$$
b\left(z_{h}, y-\Pi y\right)=0 \quad \text { for all } z_{h} \in X_{h}, y \in Y
$$

Example: A new weak form for the old Laplacian

Find $u: \quad\left\{\begin{aligned}-\Delta u=f, & \\ u=0, & \\ & \text { on } \partial \Omega .\end{aligned}\right.$

Let Ω_{h} be a mesh of Ω and $K \in \Omega_{h}$ be a mesh element. Then

$$
\int_{K} \operatorname{grad} u \cdot \operatorname{grad} v-\int_{\partial K}(n \cdot \operatorname{grad} u) v=\int_{K} f v
$$

This allows test function $v \in Y$ to be in a "broken" Sobolev space

$$
Y=H^{1}\left(\Omega_{h}\right):=\prod_{K \in \Omega_{h}} H^{1}(K)
$$

Example: A new weak form for the old Laplacian

Find $u: \quad\left\{\begin{array}{rlr}-\Delta u=f, & & \text { on } \Omega, \\ u & =0, & \\ \text { on } \partial \Omega .\end{array}\right.$

Let Ω_{h} be a mesh of Ω and $K \in \Omega_{h}$ be a mesh element. Then

$$
\begin{aligned}
\int_{K} \operatorname{grad} u \cdot \operatorname{grad} v-\int_{\partial K}(n \cdot \operatorname{grad} u) v & =\int_{K} f v . \\
\sum_{K \in \Omega_{h}}\left[\int_{K} \operatorname{grad} u \cdot \operatorname{grad} v-\int_{\partial K} n \cdot \hat{q} v\right] & =\int_{\Omega} f v .
\end{aligned}
$$

This allows test function $v \in Y$ to be in a "broken" Sobolev space

$$
Y=H^{1}\left(\Omega_{h}\right):=\prod_{K \in \Omega_{h}} H^{1}(K) .
$$

Primal DPG formulation for Dirichlet problem

$$
\begin{aligned}
b((u, \hat{q} \cdot n), v) & =\sum_{K \in \Omega_{h}}\left[\int_{K} \operatorname{grad} u \cdot \operatorname{grad} v-\int_{\partial K} \hat{q} \cdot n v\right] \\
Y & =H^{1}\left(\Omega_{h}\right) \\
X & =H_{0}^{1}(\Omega) \times Q^{\text {div }}
\end{aligned}
$$

Primal DPG formulation for Dirichlet problem

$$
\begin{aligned}
b((u, \hat{q} \cdot n), v) & =\sum_{K \in \Omega_{h}}\left[\int_{K} \operatorname{grad} u \cdot \operatorname{grad} v-\int_{\partial K} \hat{q} \cdot n v\right] \\
Y & =H^{1}\left(\Omega_{h}\right) \\
X & =H_{0}^{1}(\Omega) \times Q^{\text {div }}
\end{aligned}
$$

Definition (of $Q^{\text {div }}$, the space where numerical flux $\hat{q} \cdot n$ lies)
Define the element-by-element trace operator tr_{n} by

$$
\operatorname{tr}_{n}: H(\operatorname{div}, \Omega) \rightarrow \prod_{K \in \Omega_{h}} H^{-1 / 2}(\partial K),\left.\quad \operatorname{tr}_{n} r\right|_{\partial K}=\left.r \cdot n\right|_{\partial K}
$$

Set $Q^{\text {div }}=$ range of tr_{n}. It is complete under the norm

$$
\|\hat{q} \cdot n\|_{Q^{\operatorname{div}}}=\inf _{r \in \operatorname{tr}_{n}^{-1}\{\hat{q} \cdot n\}}\|r\|_{H(\operatorname{div}, \Omega)} .
$$

Primal DPG formulation for Dirichlet problem

$$
\begin{aligned}
b((u, \hat{q} \cdot n), v) & \left.=\sum_{K \in \Omega_{h}} \int_{K} \operatorname{grad} u \cdot \operatorname{grad} v-\right] \\
& =(\operatorname{grad} u, \operatorname{grad} v)_{h}-\langle\hat{q} \cdot n, v\rangle_{h} \\
Y & =H^{1}\left(\Omega_{h}\right) \\
X & =H_{0}^{1}(\Omega) \times Q^{\text {div }}
\end{aligned}
$$

Broken and Unbroken forms

Broken form

$$
\begin{aligned}
b((u, \hat{q} \cdot n), v) & =\underbrace{(\operatorname{grad} u, \operatorname{grad} v)_{h}}_{b_{0}(u, v)}+\underbrace{\langle-\hat{q} \cdot n, v\rangle_{h}}_{\hat{b}(\hat{q} \cdot n, v)} \\
Y & =H^{1}\left(\Omega_{h}\right) \\
X & =H_{0}^{1}(\Omega) \times Q^{\text {div }}
\end{aligned}
$$

Unbroken form

$$
b_{0}(u, v)=(\operatorname{grad} u, \operatorname{grad} v)
$$

Stability of the unbroken form on $H_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ is standard. Stability of broken form?

Abstracting the structure

Suppose we have two further Hilbert spaces X_{0} and \hat{X} such that:

Abstract setting:
Dirichlet example:

- $X_{0}=H_{0}^{1}(\Omega), \hat{X}=Q^{\text {div }}$, $Y=H^{1}\left(\Omega_{h}\right)$

Abstracting the structure

Suppose we have two further Hilbert spaces X_{0} and \hat{X} such that:

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous

Dirichlet example:

- $X_{0}=H_{0}^{1}(\Omega), \hat{X}=Q^{\text {div }}$, $Y=H^{1}\left(\Omega_{h}\right)$
- $b_{0}(u, v)=$ $(\operatorname{grad} u, \operatorname{grad} v)$

Abstracting the structure

Suppose we have two further Hilbert spaces X_{0} and \hat{X} such that:

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $\hat{b}: \hat{X} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous

Dirichlet example:

- $X_{0}=H_{0}^{1}(\Omega), \hat{X}=Q^{\text {div }}$, $Y=H^{1}\left(\Omega_{h}\right)$
- $b_{0}(u, v)=$ $(\operatorname{grad} u, \operatorname{grad} v)$
- $\hat{b}(\hat{q} \cdot n, v)=\langle-\hat{q} \cdot n, v\rangle_{h}$

Abstracting the structure

Suppose we have two further Hilbert spaces X_{0} and \hat{X} such that:

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $\hat{b}: \hat{X} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $X=X_{0} \times \hat{X}$.
- $b((x, \hat{x}), y)=b_{0}(x, y)+\hat{b}(\hat{x}, y)$

Dirichlet example:

- $X_{0}=H_{0}^{1}(\Omega), \hat{X}=Q^{\text {div }}$, $Y=H^{1}\left(\Omega_{h}\right)$
- $b_{0}(u, v)=$ $(\operatorname{grad} u, \operatorname{grad} v)$
- $\hat{b}(\hat{q} \cdot n, v)=\langle-\hat{q} \cdot n, v\rangle_{h}$
- $b((u, \hat{q} \cdot n), v)$
$=(\operatorname{grad} u, \operatorname{grad} v)_{h}$ $-\langle\hat{q} \cdot n, v\rangle_{h}$

Abstracting the structure

Suppose we have two further Hilbert spaces X_{0} and \hat{X} such that:

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $\hat{b}: \hat{X} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $X=X_{0} \times \hat{X}$.
- $b((x, \hat{x}), y)=b_{0}(x, y)+\hat{b}(\hat{x}, y)$
- $Y_{0}=\{y \in Y: \hat{b}(\hat{x}, y)=0, \forall \hat{x} \in \hat{X}\}$

Dirichlet example:

- $X_{0}=H_{0}^{1}(\Omega), \hat{X}=Q^{\text {div }}$, $Y=H^{1}\left(\Omega_{h}\right)$
- $b_{0}(u, v)=$ $(\operatorname{grad} u, \operatorname{grad} v)$
- $\hat{b}(\hat{q} \cdot n, v)=\langle-\hat{q} \cdot n, v\rangle_{h}$
- $b((u, \hat{q} \cdot n), v)$
$=(\operatorname{grad} u, \operatorname{grad} v)_{h}$ $-\langle\hat{q} \cdot n, v\rangle_{h}$
- $Y_{0}=H_{0}^{1}(\Omega)$.

From standard to broken forms: An abstract result

Assumption [H]
Hybrid form

$$
\exists \hat{c}>0: \quad \hat{c}\|\hat{x}\|_{\hat{X}} \leq \sup _{y \in Y} \frac{|\hat{b}(\hat{x}, y)|}{\|y\|_{Y}} \quad \forall \hat{x} \in \hat{X}
$$

Theorem
 (Stability of unbroken form \Longrightarrow Stability of broken form)

Suppose Assumption [H] holds. Then

$$
\left.\begin{array}{r}
{[\mathbf{U}+\mathbf{I}] \text { holds for }} \\
\quad b_{0} \text { on } X_{0} \times Y_{0}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
{[\mathbf{U}+\mathbf{I}] \text { holds for }} \\
b=b_{0}+\hat{b} \text { on } X \times Y
\end{array}\right.
$$

[Carstensen+Demkowicz+G 2015]

Example: Maxwell cavity problem

Assuming all time variations are harmonic ($e^{-\imath \omega t}$), the electric (E) and magnetic (H) fields satisfy

$$
\begin{aligned}
\imath \omega \mu H-\operatorname{curl} E & =0 & & \text { on } \Omega \\
\imath \omega \varepsilon E+\operatorname{curl} H & =J & & \text { on } \Omega \\
n \times E & =0 & & \text { on } \partial \Omega .
\end{aligned}
$$

Find $\mathrm{E}: \quad\left\{\begin{aligned} \operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega^{2} \varepsilon E & =\imath \omega J, & & \text { on } \Omega \\ n \times E & =0, & & \text { on } \partial \Omega .\end{aligned}\right.$

If ω is not a cavity resonance, then this problem is wellposed.

Deriving broken and unbroken formulation

Integrate by parts on Ω :

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} E \cdot \overline{\operatorname{curl} F}-\omega^{2} \varepsilon E \cdot \bar{F}+\int_{\partial \Omega} n \times \mu^{-1} \operatorname{curl} E \cdot \bar{F}=0
$$

Deriving broken and unbroken formulation

Unbroken (standard) formulation Integrate by parts on Ω :
Find $E \in H_{0}$ (curl, Ω) satisfying

$$
\underbrace{\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)-\omega^{2}(\varepsilon E, F)}_{b_{0}(E, F)}=(f, F)
$$

for all $F \in H_{0}(\operatorname{curl}, \Omega)$.

$$
\int_{\Omega} \mu^{-1} \operatorname{curl} E \cdot \overline{\operatorname{curl} F}-\omega^{2} \varepsilon E \cdot \bar{F}+\int_{\partial \Omega} n \times \mu^{-1} \operatorname{curl} E \cdot \bar{F}=0
$$

Deriving broken and unbroken formulation

Unbroken (standard) formulation Integrate by parts on Ω :
Find $E \in H_{0}$ (curl, Ω) satisfying

$$
\underbrace{\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)-\omega^{2}(\varepsilon E, F)}_{b_{0}(E, F)}=(f, F)
$$

for all $F \in H_{0}(\operatorname{curl}, \Omega)$.
Broken formulation Integrate by parts element by element:

$$
\sum_{K \in \Omega_{h}}[\int_{K} \mu^{-1} \operatorname{curl} E \cdot \overline{\operatorname{curl} F}-\omega^{2} \varepsilon E \cdot \bar{F}+\int_{\partial K} n \times \underbrace{\mu^{-1} \operatorname{curl} E}_{\omega \omega \hat{H}} \cdot \bar{F}]=0
$$

Deriving broken and unbroken formulation

Unbroken (standard) formulation Integrate by parts on Ω :
Find $E \in H_{0}$ (curl, Ω) satisfying

$$
\underbrace{\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)-\omega^{2}(\varepsilon E, F)}_{b_{0}(E, F)}=(f, F)
$$

for all $F \in H_{0}(\operatorname{curl}, \Omega)$.
Broken formulation Integrate by parts element by element:

$$
\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}-\omega^{2}(\varepsilon E, F)+\langle n \times \underbrace{\mu^{-1} \operatorname{curl} E}_{\imath \omega \hat{H}}, F\rangle_{h}=(f, F)
$$

Primal DPG formulation for the Maxwell problem

$$
\begin{gathered}
b((E, n \times \hat{H}), F)=\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}-\omega^{2}(\varepsilon E, F)+\imath \omega\langle n \times \hat{H}, F\rangle_{h} \\
Y=H\left(\operatorname{curl}, \Omega_{h}\right):=\prod_{K \in \Omega_{h}} H(\operatorname{curl}, K), \quad X=H_{0}(\operatorname{curl}, \Omega) \times Q^{\text {curl }}
\end{gathered}
$$

Primal DPG formulation for the Maxwell problem

$$
\begin{aligned}
& b((E, n \times \hat{H}), F)=\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}-\omega^{2}(\varepsilon E, F)+\imath \omega\langle n \times \hat{H}, F\rangle_{h} \\
& Y=H\left(\operatorname{curl}, \Omega_{h}\right):=\prod_{K \in \Omega_{h}} H(\operatorname{curl}, K), \quad X=H_{0}(\operatorname{curl}, \Omega) \times Q^{\text {curl }}
\end{aligned}
$$

Definition (of $Q^{\text {curl }}$, the space where $n \times \hat{H}$ lies)
Define the element-by-element trace operator $\operatorname{tr}_{\times}$by

$$
\operatorname{tr}_{\times}: H(\operatorname{curl}, \Omega) \rightarrow \prod_{K \in \Omega_{h}} H^{-1 / 2}(\operatorname{div}, \partial K),\left.\quad \operatorname{tr}_{\times} F\right|_{\partial K}=n \times\left. F\right|_{\partial K} .
$$

$$
Q^{\text {curl }}=\text { range }\left(\operatorname{tr}_{\times}\right) \text {, normed by }\|n \times \hat{F}\|_{Q^{\text {curl }}}=\inf _{G \in \operatorname{tr}_{\times}^{-1}\{n \times \hat{F}\}}\|G\|_{H(\text { curl }, \Omega)} \text {. }
$$

Fitting to the previous abstract structure

Abstract setting:

Maxwell example:

- $X_{0}=H_{0}(\operatorname{curl}, \Omega), \hat{X}=Q^{\text {curl }}$,
$Y=H\left(\operatorname{curl}, \Omega_{h}\right)$

Fitting to the previous abstract structure

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous

Maxwell example:

- $X_{0}=H_{0}(\operatorname{curl}, \Omega), \hat{X}=Q^{\text {curl }}$,
$Y=H\left(\operatorname{curl}, \Omega_{h}\right)$
- $b_{0}(E, F)=\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}$

$$
-\omega^{2}(\varepsilon E, F)
$$

Fitting to the previous abstract structure

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $\hat{b}: \hat{X} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous

Maxwell example:

- $X_{0}=H_{0}(\operatorname{curl}, \Omega), \hat{X}=Q^{\text {curl }}$,
$Y=H\left(\operatorname{curl}, \Omega_{h}\right)$
- $b_{0}(E, F)=\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}$

$$
-\omega^{2}(\varepsilon E, F)
$$

- $\hat{b}(n \times \hat{H}, F)=\imath \omega\langle n \times \hat{H}, F\rangle_{h}$

Fitting to the previous abstract structure

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $\hat{b}: \hat{X} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $X=X_{0} \times \hat{X}$
- $b((x, \hat{x}), y)=b_{0}(x, y)+\hat{b}(\hat{x}, y)$

Maxwell example:

- $X_{0}=H_{0}(\operatorname{curl}, \Omega), \hat{X}=Q^{\text {curl }}$,

$$
Y=H\left(\operatorname{curl}, \Omega_{h}\right)
$$

- $b_{0}(E, F)=\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}$

$$
-\omega^{2}(\varepsilon E, F)
$$

- $\hat{b}(n \times \hat{H}, F)=\imath \omega\langle n \times \hat{H}, F\rangle_{h}$

Fitting to the previous abstract structure

Abstract setting:

- $b_{0}: X_{0} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $\hat{b}: \hat{X} \times Y \rightarrow \mathbb{C}$ is sesquilinear and continuous
- $X=X_{0} \times \hat{X}$
- $b((x, \hat{x}), y)=b_{0}(x, y)+\hat{b}(\hat{x}, y)$
- $Y_{0}=\{y \in Y: \hat{b}(\hat{x}, y)=0, \forall \hat{x} \in \hat{X}\}$

Maxwell example:

- $X_{0}=H_{0}(\operatorname{curl}, \Omega), \hat{X}=Q^{\text {curl }}$,

$$
Y=H\left(\operatorname{curl}, \Omega_{h}\right)
$$

- $b_{0}(E, F)=\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}$

$$
-\omega^{2}(\varepsilon E, F)
$$

- $\hat{b}(n \times \hat{H}, F)=\imath \omega\langle n \times \hat{H}, F\rangle_{h}$
- $Y_{0}=H_{0}(\operatorname{curl}, \Omega)$.

Recall the abstract result

Assumption [H]
Hybrid form

$$
\exists \hat{c}>0: \quad \hat{c}\|\hat{x}\|_{\hat{X}} \leq \sup _{y \in Y} \frac{|\hat{b}(\hat{x}, y)|}{\|y\|_{Y}} \quad \forall \hat{x} \in \hat{X}
$$

Theorem (Stability of unbroken form \Longrightarrow Stability of broken form)
Suppose Assumption [H] holds. Then

$$
\left.\begin{array}{r}
{[\mathbf{U}+\mathbf{I}] \text { holds for }} \\
b_{0} \text { on } X_{0} \times Y_{0}
\end{array}\right\} \Longrightarrow\left\{\begin{array}{l}
{[\mathbf{U}+\mathbf{I}] \text { holds for }} \\
b=b_{0}+\hat{b} \text { on } X \times Y
\end{array}\right.
$$

Analysis of broken Maxwell and Laplace forms

The last theorem reduces analysis of wellposedness to verification of $[H]$.
$[\mathrm{U}+\mathrm{I}]$ for broken Maxwell form will follow if $[\mathrm{H}]$ is proved:

$$
\|n \times \hat{H}\|_{Q^{\mathrm{curl}}} \leq \frac{1}{\hat{c}} \sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

$[\mathbf{U}+\mathbf{I}]$ for broken Dirichlet form will follow if $[\mathbf{H}]$ is proved:

$$
\|n \cdot \hat{q}\|_{Q^{\text {div }}} \leq \frac{1}{\hat{c}} \sup _{v \in H^{1}\left(\Omega_{h}\right)} \frac{\left|\langle\hat{q} \cdot n, v\rangle_{h}\right|}{\|v\|_{H^{1}\left(\Omega_{h}\right)}}
$$

Analysis of broken Maxwell and Laplace forms

The last theorem reduces analysis of wellposedness to verification of $[H]$.
$[\mathrm{U}+\mathrm{I}]$ for broken Maxwell form will follow if $[\mathrm{H}]$ is proved:

$$
\inf _{H \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|H\|_{H(\operatorname{curl}, \Omega)}=\|n \times \hat{H}\|_{Q^{\text {curl }}} \leq \frac{1}{\hat{c}} \sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

$[\mathrm{U}+\mathrm{I}]$ for broken Dirichlet form will follow if $[\mathrm{H}]$ is proved:

$$
\inf _{r \in \operatorname{tr}_{n}^{-1}\{\hat{q} \cdot n\}}\|r\|_{H(\operatorname{div}, \Omega)}=\|n \cdot \hat{q}\|_{Q^{\text {div }}} \leq \frac{1}{\hat{c}} \sup _{v \in H^{1}\left(\Omega_{h}\right)} \frac{\left|\langle\hat{q} \cdot n, v\rangle_{h}\right|}{\|v\|_{H^{1}\left(\Omega_{h}\right)}}
$$

Interface (inf=sup) lemma

Lemma

[Carstensen+Demkowicz+G 2015]

$$
\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, \Omega)}=\sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

Interface (inf=sup) lemma

$$
\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, \Omega)}=\sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

Interpreting the lemma for a one element mesh:

- Two types of traces of $F \in H(\operatorname{curl}, K)$ on one element boundary:

$$
\operatorname{tr}_{\times} F=n \times\left. F\right|_{\partial K}, \quad \operatorname{tr}_{\top} F=(n \times F) \times\left. n\right|_{\partial K}
$$

Interface (inf=sup) lemma

$$
\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, \Omega)}=\sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

Interpreting the lemma for a one element mesh:

- Two types of traces of $F \in H(\operatorname{curl}, K)$ on one element boundary:

$$
\operatorname{tr}_{\times} F=n \times\left. F\right|_{\partial K}, \quad \operatorname{tr}_{\top} F=(n \times F) \times\left. n\right|_{\partial K}
$$

- Range $\left(\operatorname{tr}_{\times}\right)=H^{-1 / 2}(\operatorname{div}, \partial K) . \quad$ Range $\left(\operatorname{tr}_{T}\right)=H^{-1 / 2}($ curl, $\partial K)$.

Interface (inf=sup) lemma

Lemma

[Carstensen+Demkowicz+G 2015]

$$
\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, \Omega)}=\sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

Interpreting the lemma for a one element mesh:

- Two types of traces of $F \in H(\operatorname{curl}, K)$ on one element boundary:

$$
\operatorname{tr}_{\times} F=n \times\left. F\right|_{\partial K}, \quad \operatorname{tr}_{\top} F=(n \times F) \times\left. n\right|_{\partial K}
$$

- Range $\left(\operatorname{tr}_{\times}\right)=H^{-1 / 2}(\operatorname{div}, \partial K) . \quad$ Range $\left(\operatorname{tr}_{T}\right)=H^{-1 / 2}(\operatorname{curl}, \partial K)$.
- Lemma \Longrightarrow the inf $=\|n \times \hat{H}\|_{H^{-1 / 2}(\text { div }, \partial K)}=$ the sup $=$

$$
=\sup _{F_{T} \in H^{-1 / 2}(\operatorname{curl}, \partial K)} \frac{\left|\left\langle n \times \hat{H}, F_{\mathrm{T}}\right\rangle_{h}\right|}{\left\|F_{\mathrm{T}}\right\|_{H^{-1 / 2}(\operatorname{curl}, \partial K)}}=\|n \times \hat{H}\|_{\left[H^{-1 / 2}(\operatorname{curl}, \partial K)\right]^{*}} .
$$

Interface (inf=sup) lemma

Lemma

 [Carstensen+Demkowicz+G 2015]$$
\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, \Omega)}=\sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

\Longrightarrow The lemma, on one element K, says that the norms of

$$
H^{-1 / 2}(\operatorname{div}, \partial K) \text { and }\left[H^{-1 / 2}(\operatorname{curl}, \partial K)\right]^{*} \text { are equal. }
$$

Interface (inf=sup) lemma

Lemma

 [Carstensen+Demkowicz+G 2015]$$
\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, \Omega)}=\sup _{F \in H\left(\operatorname{curl}, \Omega_{h}\right)} \frac{\left|\langle n \times \hat{H}, F\rangle_{h}\right|}{\|F\|_{H\left(\operatorname{curl}, \Omega_{h}\right)}}
$$

Proof:
Given $n \times \hat{H}$ on element boundary ∂K, solve these:
Find $H \in H(\operatorname{curl}, K)$:
Find $G \in H($ curl,$K)$:
$\left\{\begin{array}{ll}n \times H=n \times \hat{H}, & \text { on } \partial K, \\ \text { curl curl } H+H=0, & \text { in } K .\end{array} \begin{cases}n \times \operatorname{curl} G=n \times \hat{H}, & \text { on } \partial K, \\ \text { curl } \operatorname{curl} G+G=0, & \text { in } K .\end{cases}\right.$
One is related to the "inf" and the other is related to the "sup"...

Proof (continued)

$$
\begin{aligned}
& \text { Find } H \in H(\operatorname{curl}, K): \\
& \begin{cases}n \times H=n \times \hat{H}, & \text { on } \partial K, \\
\text { curl curl } H+H=0, & \text { in } K .\end{cases}
\end{aligned}
$$

Find $G \in H(\operatorname{curl}, K)$:

$$
\begin{cases}n \times \operatorname{curl} G=n \times \hat{H}, & \text { on } \partial K, \\ \text { curl curl } G+G=0, & \text { in } K\end{cases}
$$

$$
\|H\|_{H(\operatorname{curl}, K)}=\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, K)}=: I N F
$$

Proof (continued)

Find $H \in H(\operatorname{curl}, K)$:

$$
\begin{cases}n \times H=n \times \hat{H}, & \text { on } \partial K, \\ \text { curl curl } H+H=0, & \text { in } K .\end{cases}
$$

Find $G \in H(\operatorname{curl}, K)$:
$\{n \times \operatorname{curl} G=n \times \hat{H}, \quad$ on ∂K, curl curl $G+G=0$, in K.

$$
\begin{aligned}
\|H\|_{H(\operatorname{curl}, K)} & =\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, K)}=: I N F . \\
\|G\|_{H(\operatorname{curl}, K)} & =\sup _{F \in H(\operatorname{curl}, K)} \frac{\left|(\operatorname{curl} G, \operatorname{curl} F)_{K}+(G, F)_{K}\right|}{\|F\|_{H(\operatorname{curl}, K)}} \\
& =\sup _{F \in H(\operatorname{curl}, K)} \frac{|\langle n \times \hat{H}, F\rangle|}{\|F\|_{H(\operatorname{curl}, K)}}=: S U P .
\end{aligned}
$$

Proof (continued)

Find $H \in H(\operatorname{curl}, K)$:

$$
\begin{cases}n \times H=n \times \hat{H}, & \text { on } \partial K, \\ \text { curl curl } H+H=0, & \text { in } K .\end{cases}
$$

Find $G \in H(\operatorname{curl}, K)$:
$\{n \times \operatorname{curl} G=n \times \hat{H}, \quad$ on ∂K, curl curl $G+G=0$, in K.

$$
\begin{aligned}
\|H\|_{H(\operatorname{curl}, K)} & =\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, K)}=: I N F . \\
\|G\|_{H(\operatorname{curl}, K)} & =\sup _{F \in H(\operatorname{curl}, K)} \frac{\left|(\operatorname{curl} G, \operatorname{curl} F)_{K}+(G, F)_{K}\right|}{\|F\|_{H(\operatorname{curl}, K)}} \\
& =\sup _{F \in H(\operatorname{curl}, K)} \frac{|\langle n \times \hat{H}, F\rangle|}{\|F\|_{H(\operatorname{curl}, K)}}=: S U P .
\end{aligned}
$$

Now, $H=\operatorname{curl} G$

Proof (continued)

Find $H \in H(\operatorname{curl}, K)$:

$$
\begin{cases}n \times H=n \times \hat{H}, & \text { on } \partial K, \\ \text { curl curl } H+H=0, & \text { in } K .\end{cases}
$$

Find $G \in H(\operatorname{curl}, K)$:
$\{n \times \operatorname{curl} G=n \times \hat{H}, \quad$ on ∂K, curl curl $G+G=0$, in K.

$$
\begin{aligned}
\|H\|_{H(\operatorname{curl}, K)} & =\inf _{F \in \operatorname{tr}_{\times}{ }^{-1}\{n \times \hat{H}\}}\|F\|_{H(\operatorname{curl}, K)}=: I N F . \\
\|G\|_{H(\operatorname{curl}, K)} & =\sup _{F \in H(\operatorname{curl}, K)} \frac{\left|(\operatorname{curl} G, \operatorname{curl} F)_{K}+(G, F)_{K}\right|}{\|F\|_{H(\operatorname{curl}, K)}} \\
& =\sup _{F \in H(\operatorname{curl}, K)} \frac{|\langle n \times \hat{H}, F\rangle|}{\|F\|_{H(\operatorname{curl}, K)}}=: S U P .
\end{aligned}
$$

Now, $H=\operatorname{curl} G$ and $\|H\|_{H(\operatorname{curl}, K)}=\|G\|_{H(\operatorname{curl}, K)} \Longrightarrow I N F=S U P$.

Summary of the technique

- Prove wellposedness (verify $[\mathbf{U}+\mathrm{I}]$ of the unbroken often standard formulation.
- Prove an "inf=sup" lemma to verify [H].
- Conclude the wellposedness $[\mathbf{U}+\mathbf{I}]$ of the broken formulation by our abstract theorem.

Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:

- Ready-made error estimator for spacetime adaptivity.
- Previous technique can be used to prove wellposedness.
t

Adaptive iterate 0

Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:

- Ready-made error estimator for spacetime adaptivity.
- Previous technique can be used to prove wellposedness.
t

$$
A\left[\begin{array}{l}
q \\
\mu
\end{array}\right]=\left[\begin{array}{c}
\partial_{t} q-\operatorname{grad}_{x} \mu \\
\partial_{t} \mu-\operatorname{div}_{x} q
\end{array}\right]
$$

Adaptive iterate 5

Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:

- Ready-made error estimator for spacetime adaptivity.
- Previous technique can be used to prove wellposedness.
t
 $\left[\begin{array}{c}q \\ \mu\end{array}\right]=\left[\begin{array}{c}\partial_{t} q-\operatorname{grad}_{x} \mu \\ \partial_{t} \mu-\operatorname{div}_{x} q\end{array}\right]$

Adaptive iterate 10

Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:

- Ready-made error estimator for spacetime adaptivity.
- Previous technique can be used to prove wellposedness.

Adaptive iterate 15

Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:

- Ready-made error estimator for spacetime adaptivity.
- Previous technique can be used to prove wellposedness.

$$
A\left[\begin{array}{c}
q \\
\mu
\end{array}\right]=\left[\begin{array}{c}
\partial_{t} q-\operatorname{grad}_{x} \mu \\
\partial_{t} \mu-\operatorname{div}_{x} q
\end{array}\right]
$$

Adaptive iterate 20

The lemma's idea can extended far

Find $H \in H(\operatorname{curl}, K)$:

$$
\begin{cases}n \times H=n \times \hat{H}, & \text { on } \partial K, \\ \text { curl curl } H+H=0, & \text { in } K .\end{cases}
$$

Find $H \in W(K)$:

$$
\begin{cases}D H=\hat{q}, & \text { on } \partial K, \\ A^{*} A H+H=0, & \text { in } K .\end{cases}
$$

$[A u]_{i}=\partial^{\alpha}\left(a_{i j \alpha} u_{j}\right)$.
$W(K)=\left\{u \in L^{2}: A u \in L^{2}\right\}$.
$\left\langle D w, w^{*}\right\rangle w^{*}=\left(A w, w^{*}\right)-\left(w, A^{*} w^{*}\right)$.

Find $G \in H(\operatorname{curl}, K)$:

$$
\begin{cases}n \times \operatorname{curl} G=n \times \hat{H}, & \text { on } \partial K, \\ & \text { curl curl } G+G=0, \\ \text { in } K\end{cases}
$$

Find $G \in W^{*}(K)$:

$$
\begin{cases}D A^{*} G=\hat{q}, & \text { on } \partial K, \\ A A^{*} G+G=0, & \text { in } K .\end{cases}
$$

Operator A generalizes curl.
$W(K)$ generalizes H (curl, K).
D generalizes $n \times\left.\cdot\right|_{\partial K}$.

$$
\mathrm{INF}=\mathrm{SUP}
$$

(for much more general operators)
[Demkowicz+G+Nagaraj+Sepulveda 2017]

Next

(1) The importance of Y
(2) "Broken" forms for Laplace \& Maxwell equations
(3) Verification of $[\mathbf{U}+\mathbf{I}]$
(9) Verification of [F]

Recall the third assumption

Assumption [U]

$$
\{y \in Y: b(x, y)=0 \text { for all } x \in X\}=\{0\}
$$

Assumption [1]
Inf-Sup

$$
\exists c_{1}>0: \quad \forall x \in X, \quad c_{1}\|x\|_{X} \leq \sup _{0 \neq y \in Y} \frac{|b(x, y)|}{\|y\|_{Y}} \leq\|b\|\|x\|_{X}
$$

Assumption [F]

Fortin Operator
\exists continuous linear $\Pi: Y \rightarrow Y_{h}$ such that

$$
b\left(z_{h}, y-\Pi y\right)=0 \quad \text { for all } z_{h} \in X_{h}, y \in Y
$$

Example: Discrete spaces for 3D Laplace case

$$
\begin{aligned}
b((u, \hat{q} \cdot n), v) & =(\operatorname{grad} u, \operatorname{grad} v)_{h}-\langle\hat{q} \cdot n, v\rangle_{h} \\
Y & =H^{1}\left(\Omega_{h}\right) \\
X & =H_{0}^{1}(\Omega) \times Q^{\operatorname{div}}
\end{aligned}
$$

Given an X_{h}, we want a discrete space Y_{h} satisfying Assumption [F]:

$$
\begin{aligned}
0 & =b\left(\left(w_{h}, \hat{r}_{h} \cdot n\right), v-\Pi v\right) \\
& =-\left(\Delta w_{h}, v-\Pi v\right)_{h}+\left\langle n \cdot \operatorname{grad} w_{h}-\hat{r}_{h} \cdot n, v-\Pi v\right\rangle_{h} .
\end{aligned}
$$

If degree $\left(w_{h} \mid \kappa\right) \leq p+1$ and $\operatorname{degree}\left(\hat{r}_{h} \cdot n\right) \leq p$, then moment conditions

$$
\left.\begin{array}{rl}
\left(P_{p-1}(K), v-\Pi v\right)_{K} & =0 \\
\left\langle n \cdot R_{p+1}(K), v-\Pi v\right\rangle_{\partial K} & =0
\end{array} \quad<\text { (needed for Laplace example) }\right)
$$

Fortin operators with moment conditions

For Maxwell, and other applications, we need continuous linear operators

$$
\begin{aligned}
& \Pi_{p+3}^{\mathrm{grad}}: H^{1}(K) \rightarrow P_{p+3}(K) \\
& \Pi_{p+3}^{\mathrm{curl}}: H(\operatorname{curl}, K) \rightarrow N_{p+3}(K), \\
& \Pi_{p+3}^{\mathrm{div}}: H(\operatorname{div}, K) \rightarrow R_{p+3}(K),
\end{aligned}
$$

satisfying these moment conditions on a tetrahedral element:

$$
\begin{aligned}
\left(P_{p-1}(K), \Pi_{p+3}^{\mathrm{grad}} v-v\right) & =0 \\
\left\langle n \cdot R_{p+1}(K), \Pi_{p+3}^{\operatorname{grad}} v-v\right\rangle & =0 \\
\left(P_{p}(K)^{3}, \Pi_{p+3}^{\mathrm{curl}} E-E\right) & =0 \\
\left\langle n \times P_{p+1}(K)^{3}, \Pi_{p+3}^{\mathrm{curl}} E-E\right\rangle & =0 \\
\left(P_{p+1}(K)^{3}, \Pi_{p+3}^{\mathrm{div}} \tau-\tau\right) & =0 \\
\left\langle n P_{p+2}(K), \Pi_{p+3}^{\mathrm{div}} \tau-\tau\right\rangle & =0
\end{aligned}
$$

Fortin operators with moment conditions

Theorem

On any tetrahedron K, there are continuous linear operators

$$
\begin{aligned}
\Pi_{p+3}^{\mathrm{grad}} & : H^{1}(K) \rightarrow P_{p+3}(K) \\
\Pi_{p+3}^{\mathrm{curl}} & : H(\operatorname{curl}, K) \rightarrow N_{p+3}(K) \\
\Pi_{p+3}^{\mathrm{div}} & : H(\operatorname{div}, K) \rightarrow R_{p+3}(K)
\end{aligned}
$$

such that the diagram

$$
\begin{aligned}
& H^{1}(K) / \mathbb{R} \xrightarrow{\text { grad }} H(\text { curl }, K) \xrightarrow{\text { curl }} H(\operatorname{div}, K) \xrightarrow{\text { div }} L^{2}(K) \\
& \downarrow_{p+3}^{\text {grad }} \quad \downarrow_{p+3}^{\text {curl }} \quad \|_{p+3}^{\text {div }} \quad \Pi_{p+2} \\
& P_{p+3}(K) / \mathbb{R} \xrightarrow{\text { grad }} N_{p+3}(K) \xrightarrow{\text { curl }} R_{p+3}(K) \xrightarrow{\text { div }} P_{p+2}(K)
\end{aligned}
$$

commutes and the moment conditions of the previous slide hold.

The DPG method for the Dirichlet problem

$$
\begin{aligned}
& b((u, \hat{q} \cdot n), v)=(\operatorname{grad} u, \operatorname{grad} v)_{h}-\langle\hat{q} \cdot n, v\rangle_{h} \\
& Y=H^{1}\left(\Omega_{h}\right) \\
& X=H_{0}^{1}(\Omega) \times Q^{\operatorname{div}} \\
& Y_{h}=\left\{y \in Y:\left.y\right|_{K} \in P_{p+3}(K)\right\} \\
& X_{h}=\left\{\left(w_{h}, \hat{r}_{h} \cdot n\right) \in X:\left.w_{h}\right|_{K} \in P_{p+1}(K),\left.\hat{r}_{h}\right|_{K} \in R_{p+1}(K)\right\}
\end{aligned}
$$

We have indicated how to verify $[\mathbf{U}+\mathbf{I}+\mathbf{F}]$ in this setting. Hence a priori and a posteriori error estimates follow.

The DPG method for the Maxwell problem

$$
\begin{aligned}
& b((E, n \times \hat{H}), F)=\left(\mu^{-1} \operatorname{curl} E, \operatorname{curl} F\right)_{h}-\omega^{2}(\varepsilon E, F)+\imath \omega\langle n \times \hat{H}, F\rangle_{h} \\
& Y=H\left(\operatorname{curl}, \Omega_{h}\right) \\
& X=H(\operatorname{curl}, \Omega) \times Q^{\text {curl }} \\
& Y_{h}=\left\{F \in Y:\left.F\right|_{K} \in N_{p+3}(K)\right\} \\
& X_{h}=\left\{(E, n \times \hat{H}) \in X:\left.E\right|_{K} \in P_{p}(K)^{3},\left.\hat{H}\right|_{K} \in P_{p+1}(K)^{3}\right\}
\end{aligned}
$$

We have indicated how to verify $[\mathbf{U}+\mathbf{I}+\mathbf{F}]$ in this setting. Hence a priori and a posteriori error estimates follow.

The DPG method for spacetime problems

- Discussed techniques are useful to prove [U + I] also for many spacetime operators (wave, Schrödinger, etc.)
- However, verification of $[\mathbf{F}]$ is an open problem for spacetime operators.

Conclusion of Lecture 3

(1) The importance of Y
(2) "Broken" forms for Laplace \& Maxwell equations
(3) Verification of [U+I]
(9) Verification of [F]

