The Discontinuous Petrov Galerkin (DPG) Method with Optimal Test Functions: Lecture 2

Leszek Demkowicz & Jay Gopalakrishnan

The University of Texas at Austin & Portland State University

Spring school, University of South Carolina, February 2018

Thanks: AFOSR

The philosophy

Numerical methods achieve stability in many different ways.

- Standard finite element method: coercivity & conformity
- Mixed methods: balanced pair of spaces
- SUPG methods: artificially added streamline diffusion
- DG methods: upwind stabilization & jump penalization
- HDG methods: difference between interior & interface unknowns
 DPG methods: stability by automatic test space design

- Petrov-Galerkin schemes
- Ideal & practical DPG methods
- A priori error analysis
- Least-squares interpretation
- Interpretation as a mixed method
- A posteriori error estimate

PG schemes are distinguished by different trial and test (Hilbert) spaces.

For PG schemes, $X_h \neq Y_h$ in general.

- [B. G. Galerkin, 1915] "Series occurring in various questions concerning the elastic equilibrium of rods and plates", *Vestnik Inzhenerov* (*Engineer's Bulletin*).
- [G. I. Petrov, 1940] "Application of the method of Galerkin to a problem involving the stationary flow of a viscous fluid. *Prikl. Matem. i Mekh.* (Journal of Applied Mathematics and Mechanics).
- S. G. Mikhlin, 1950] "Variational methods of solution of problems of mathematical physics", Uspekhi Mat. Nauk (Russian Math. Surveys).

Petrov's paper

АКАДЕМИЯ НАУК СССР USSR ACADEMY OF SCIENCES

ИНСТИТУТ МЕХАНИКИ

ЖУРНАЛ "ПРИКЛАДНАЯ Математика и механика" INSTITUTE OF MECHANICS

JOURNAL OF APPLIED MATHEMATICS AND MECHANICS

Т. IV, в. 3, 1940

ПРИМЕНЕНИЕ МЕТОДА ГАЛЕРКИНА К ЗАДАЧЕ ОБ УСТОЙЧИВОСТИ ТЕЧЕНИЯ ВЯЗКОЙ ЖИДКОСТИ

г. и. петров

(Москва)

При исследовании распространения колебаний в плоском прямолинейном потоке вязкой жидкости и устойчивости таких течений задача приводится к краевой задаче для уравнения:

$$L(\mathbf{y}) = \varphi^{\mathrm{IV}}(y) - 2 \alpha^2 \varphi''(y) + \mathbf{z}$$

1.	Имеем	линейное	уравнение		
			$L(\varphi) - f = 0$	T. C.	(1.1)

ф. система функций, удовлетворяющая граничным условиям нашей
задачи,

v. — полная система ортогональных функций.

Подставим в уравнение (1.1) линейную комбинацию:

$$\varphi^{(n)} = \sum_{s}^{n} a_{s} \varphi_{s}; \qquad (1.2)$$

Получим n уравнений для определения n коэффициентов as:

$$\int_{0}^{1} L(\varphi^{(n)}) v_i \, dy - \int_{0}^{1} f v_i \, dy = 0.$$
(1.4)

системы, стремящееся в точному при n→∞. Если функцин v_i взять те же, что и φ_i, то уравнения (1.4) будут уравнениями метода Галеркина^[7]. В некоторых случаях удобно пользоваться другой системой функций, так как функции v_i не должны обязательно удовлетворять граничным условиям. Требование ортогональности принято нами только для удобства вывода "... If functions v_i are taken to be the same as φ_i, then (1.4) is the equation of Galerkin's method. In some cases, it can be useful to employ another set of v_i, since v_i need not

satisfy the boundary conditions"

However, there is no example, or analysis, in the rest of the paper with $\mathbf{v}_i \neq \varphi_i$.

ВАРИАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

С. Г. Михлин

СОДЕРЖАНИЕ

ş	1.	Введение .	'																									۰.	3
ŝ	2.	Теорема о м	иним	алы	MOF	ΦVI	IKI	uno.	на	ле																			5
8	3.	Общее реше	ние м	ини	мал	ьно	йі	ipe	обл	емі	a.																		6
š	4.	Особые случ	ан.					۰.																					10
ŝ	5.	Метол Ритиз																										÷.	11
8	6.	Пругая вари	ацио	нная	I 33	пач	a. 1	Me	TO	то	DT	010	она	UT	HE	x	ш	00	ECI	III	й								14
ŝ	7.	Вариационн	ый ме	тол	BI	IDO	ле	ме	co	бст	ве	нн	ых	3	Ha.	ter	UI)	й									1	2	16
ŝ	8.	Некоторые з	амеча	ния																						1	1	2	19
š	9.	Задача Дир	ахле																								1		20
ŝ	10.	О своболном	член	ю л	ифф	epe	нц	ra.	њн	ore	Ň	Da	вн	ен	ия		2		2	2							1		22
8	11.	Первая крас	вая з	ала	a i	reop	ни	VI	ID	TO	сті	i i					2		2								1		25
ŝ	12.	Теоремы «в.	южен	I RH	про	стра	нс	TBO	Ċ	J		Ĉoi	бо:	iei	a	1	1	1	2								1	2	29
Ĩ	13.	Задача Ней	мана												· .												1	2	30
i	14.	Случай обл	асти с	BI	now	пен	HO	ทั่า	rna	HHI	iei	£.	2														Ξ.		32
ł	15.	Опенка пог	решно	ости	пр	ибл	IT SEC	ອ້າກ	ior	o r	en	Te F	1115	Ϊ.						2					1		Ξ.		33
i	16.	Характер у	повле	TROD	ени	IN IN	adod	ben	ен	nu		н	M	v	Dai	вне	H	ию	. H	R	Da	ев	543		ve.	ло)- ·		
		BUSM .											. '																35
5	17.	Метол наим	еньши	их в	пал	Dat	OB																			Ξ.			38
į	18.	Связь с вар	нацио	пны	M N	iero	101	÷.										Ξ.	2		21		1		1		1		41
į	40	Moroz Para					400	۰.	1				÷.										1		1	1	1		42
			224 24 24 24																			-					1.1	•	
- 5	20.	Некоторые 1	ркина грило:	HOH:	ия.																								4.5
	20.	Некоторые 1 Об определ	ркина трило: энци	жен собс	ия.		 x :		Me	 нто		110	м	 Это	av.	ir.		ēn			÷	:	1	1	1	1	:	•	40
An 101 100	20. 21. 22.	Некоторые і Об определ Обобщение	ркина грилоз ении Г. И.	жен собс Пет	ия.	нны м	x a		ме	нто	в.	, 110	м	TO	лу	r	ал	ëp	кі	на	Å	:			•	•	•	:	40 47 50
and the state of the state	20. 21. 22.	Некоторые и Об определ Обобщение	ркина гридоз энци Г. И.	жен собс Пет	ия . твел грон	: нны за	xa	эле	ме	нто	в.	10	м	ero	ду •	ir	ал	ëp		іна •						:	:	•	43 47 50 50

§ 1. ВВЕДЕНИЕ

Хорошо известно, что в ряде случаев задача интегрирования дифферен-

ВАРИАЦИОННЫЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ МАТЕМАТИЧЕСКОЙ ФИЗИКИ

С. Г. Михлин

СОДЕРЖАНИЕ

ş	1.	ведение		. 3
ŝ	2.	еорема о минимальном функционале		. 5
ŝ	3.	бщее решение минимальной проблемы		. 6
Ę	4.	собые случан		. 10
ŝ	5.	етод Ритпа		. 11
ě	6.	ругая вариационная задача. Метод ортогональных проекций		. 14
ŝ	7.	ариационный метол в проблеме собственных значений		16
ŝ	8.	екоторые замечания		19
ŝ	9.	адача Лирихле		. 20
š	10.	свободном члене дифференциального уравнения		22
ŝ	11.	Гервая краевая задача теории упругости		25
ś	12.	еоремы «вложения пространств» С. Л. Соболева		. 29
8	13.	Вадача Неймана		. 30
ŝ	14.	Лучай области с вырожденной границей		. 32
ŝ	15.	Оденка погрешности приближённого решения		. 33
ŝ	16.	Сарактер удовлетворения дифференциальному уравнению и краевым усл	-01	
		виям		. 35
\$	17.	бетод наименьших квадратов		. 38
8	18.	вязь с вариационным методом		41
ŝ	19.	Аетод Галеркина		42
- 8	20.	Іскоторые приложения.		45
ŝ	04	ornarazare astanoners and and to to to the Participan		1.7
-	22.	Обобщение Г. И. Петрова		50
-001	22.	Обобщение Г. И. Петрова		50

§ 1. ВВЕДЕНИЕ

Хорошо известно, что в ряде случаев задача интегрирования дифферен-

Mikhlin's review

1. В 2. Т 3. О 4. О 5. Д 7. В

8. H

9. 3

10. 0

11. II 12. T

13. 3

§ 14. C § 15. C

§ 16. X

17. N

18. C

§ 20. H

Цитира

§ 22. ОБОБЩЕНИЕ Г. И. ПЕТРОВА

В статье [13] Г. И. Петров предложил некоторое обобщение метода Галёркина. Это обобщение состоит в следующем: решая уравнение

$$Au - f = 0, \tag{1}$$

мы вводим две координатные последовательности $\{\tau_n\}$ и $\{\phi_n\}$; приближённое решение строим в виде

$$u_n = \sum_{k=1}^n a_k \phi_k$$

и определяем коэффициенты a_k из условия, чтобы левая часть уравнения (1) после подстановки в неё u_n вместо u была ортогопальна к $\varphi_1, \varphi_2, \ldots, \varphi_n$. Как и в предшествующих параграфах, мы примем, что $A = A_0 + K$, где A_0 — положительно-определённый самосотряжённый оператор, и $T = A_0^{-1}K$ виолне-непрерывен в соответствующем пространстве H_0 . Далее, мы будем считать, что $\phi_n \in D_A$ и $\varphi_n \in H_0$. Мы сформулируем, не приводя доказательства, результат Н. И. Польского [16], относящийся к проблеме сходимости обобщённого метода Галёркина.

Обозначим через L_n и M_n подпространства H_0 , натянутые на элементы $\psi_1, \psi_2, \ldots, \psi_n$ и $\varphi_1, \varphi_2, \ldots, \varphi_n$ соответственно, и через P_n — оператор проектирования на M_n . Допустим, что для любого $u \in L_n$ выполняется неравенство

$$|u| \leqslant C |P_n u|, \tag{2}$$

где C — постоянная, которая не зависит от *n*. Тогда все теоремы §§ 19 и 21 остаются в силе. Условие (2) не только достаточно, но в некотором смысле и необходимо: если оно не выполнено, то, как показывают примеры, может случиться, что либо u_n невозможно построить при бесконечном множестве значений n, либо u_n не стремятся к решению уравнения (1).

- Mikhlin refers to Petrov's contribution as the "generalized Galerkin method".
- Mikhlin says that an analysis of such methods was performed in an early dissertation:
 - [N. I. Pol'sky, 1949] "On the convergence of approximation methods of Galerkin type", *Kiev State University*, Ph. D. dissertation (hand written).
- If anyone knows more about the analysis in this dissertation, please contact me!

Elements of modern theory

• Variational formulation:

(BNB Theorem)

$$\begin{bmatrix} \text{Exact inf-sup condition} \\ c_1 \| x \|_X \leq \sup_{y \in Y} \frac{|b(x, y)|}{\| y \|_Y} \end{bmatrix} + \begin{bmatrix} \text{adjoint} \\ \text{uniqueness} \end{bmatrix} \implies \text{wellposedness}$$

Babuška's theorem:

[Babuška 1970], [Xu+Zikatanov 2003]

Discrete inf-sup condition

$$c_2 \|x_h\|_X \leq \sup_{y_h \in Y_h} \frac{|b(x_h, y_h)|}{\|y_h\|_Y} \implies \|x - x_h\|_X \leq \frac{\|b\|}{c_2} \inf_{w_h \in X_h} \|x - w_h\|_X.$$

• Difficulty: Exact inf-sup condition \implies Discrete inf-sup condition

Elements of modern theory

• Variational formulation:

(BNB Theorem)

$$\begin{bmatrix} \text{Exact inf-sup condition} \\ c_1 \| x \|_X \leq \sup_{y \in Y} \frac{|b(x, y)|}{\| y \|_Y} \end{bmatrix} + \begin{bmatrix} \text{adjoint} \\ \text{uniqueness} \end{bmatrix} \implies \text{wellposedness}$$

Babuška's theorem:

[Babuška 1970], [Xu+Zikatanov 2003]

Discrete inf-sup condition

$$c_2 \|x_h\|_X \leq \sup_{y_h \in Y_h} \frac{|b(x_h, y_h)|}{\|y_h\|_Y} \implies \|x - x_h\|_X \leq \frac{\|b\|}{c_2} \inf_{w_h \in X_h} \|x - w_h\|_X.$$

- Difficulty: Exact inf-sup condition \implies Discrete inf-sup condition
- Is there a way to find a stable test space for any given trial space?

Pick any $X_h \subseteq X$. The ideal DPG method finds $x_h \in X_h$ satisfying $b(x_h, y) = \ell(y)$, for all $y \in Y_h^{\text{opt}} \stackrel{\text{def}}{=} T(X_h)$, where $T : X \mapsto Y$ is defined by $(Tw, y)_Y = b(w, y)$, for all $y \in Y$ and any $w \in X$.

Rationale:

Pick any $X_h \subseteq X$. The ideal DPG method finds $x_h \in X_h$ satisfying $b(x_h, y) = \ell(y)$, for all $y \in Y_h^{\text{opt}} \stackrel{\text{def}}{=} T(X_h)$, where $T : X \mapsto Y$ is defined by $(Tw, y)_Y = b(w, y)$, for all $y \in Y$ and any $w \in X$.

Rationale:

• Q: Which function y maximizes $\frac{|b(x, y)|}{\|y\|_{Y}}$ for any given x ?

$$\sup_{y \in Y} \frac{|b(x, y)|}{\|y\|_{Y}} = \sup_{y \in Y} \frac{|(Tx, y)_{Y}|}{\|y\|_{Y}}$$

Pick any $X_h \subseteq X$. The ideal DPG method finds $x_h \in X_h$ satisfying $b(x_h, y) = \ell(y)$, for all $y \in Y_h^{\text{opt}} \stackrel{\text{def}}{=} T(X_h)$, where $T : X \mapsto Y$ is defined by $(Tw, y)_Y = b(w, y)$, for all $y \in Y$ and any $w \in X$.

Rationale:

Q: Which function y maximizes ^{|b(x, y)|}/_{||y||Y} for any given x ?
A: y = Tx is the maximizer. ← Optimal test function.

Pick any $X_h \subseteq X$. The ideal DPG method finds $x_h \in X_h$ satisfying $b(x_h, y) = \ell(y)$, for all $y \in Y_h^{\text{opt}} \stackrel{\text{def}}{=} T(X_h)$, where $T : X \mapsto Y$ is defined by $(Tw, y)_Y = b(w, y)$, for all $y \in Y$ and any $w \in X$.

Rationale:

 Q: Which function y maximizes ^{|b(x, y)|}/_{||y||y} for any given x ?

 A: y = Tx is the maximizer. ← Optimal test function.

 DPG Idea: If the discrete test space contains the optimal test functions,
 exact inf-sup condition ⇒ discrete inf-sup condition.

Quasioptimality of the ideal DPG Method

Assumptions $[U+I] \implies$

$$||x - x_h||_X \le \frac{||b||}{c_1} \inf_{w_h \in X_h} ||x - w_h||_X.$$

Proof: Since the discrete inf-sup condition holds, apply Babuška's theorem.

_

1D transport:
$$\begin{bmatrix} u' = f & \text{in } (0,1), \\ u(0) = u_0 & (\text{inflow b.c.}) \end{bmatrix}$$

1D transport:
$$\begin{bmatrix} u' = f & \text{in } (0, 1), \\ u(0) = u_0 & (\text{inflow b.c.}) \end{bmatrix}$$

L² weak form:
$$\begin{bmatrix} \text{Find } u \in L^2, \text{ and a number } \hat{u}_1 \in \mathbb{R}, \text{ satisfying} \\ \underbrace{-\int_0^1 uv' + \hat{u}_1 v(1)}_{b((u,\hat{u}_1),v)} = \underbrace{\int_0^1 fv + u_0 v(0)}_{\ell(v)}, \quad v \in H^1.$$

Trial space: $X = L^2 \times \mathbb{R}, \quad ||(u,\hat{u}_1)||_X^2 = ||u||^2 + |\hat{u}_1|^2.$
Test space: $Y = H^1, \quad ||v||_Y^2 = ||v'||^2 + |v(0)|^2.$

1D transport:
$$\begin{bmatrix} u' = f & \text{in } (0, 1), \\ u(0) = u_0 & (\text{inflow b.c.}) \end{bmatrix}$$

$$L^2 \text{ weak form:} \begin{bmatrix} \text{Find } u \in L^2, \text{ and a number } \hat{u}_1 \in \mathbb{R}, \text{ satisfying} \\ \underbrace{-\int_0^1 uv' + \hat{u}_1 v(1)}_{b((u,\hat{u}_1),v)} = \underbrace{-\int_0^1 fv + u_0 v(0), \quad v \in H^1.}_{\ell(v)} \\ \text{Trial space: } X = L^2 \times \mathbb{R}, \quad \|(u,\hat{u}_1)\|_X^2 = \|u\|^2 + |\hat{u}_1|^2. \\ \text{Test space: } Y = H^1, \quad \|v\|_Y^2 = \|v'\|^2 + |v(0)|^2. \end{bmatrix}$$

$$\text{Ideal DPG:} \begin{bmatrix} \text{Find } (u_p, \hat{u}_1) \in X_h \equiv P_p \times \mathbb{R}, \text{ satisfying} \\ b((u_p, \hat{u}_1), v) = \ell(v), \quad \text{ for all } v \in Y_h^{\text{opt}} = T(X_h). \end{bmatrix}$$

Exercise: For this example, $Y_h^{\text{opt}} = P_{p+1}$.

Exercise: For this example, $Y_h^{\text{opt}} = P_{p+1}$.

• The ideal DPG method requires us to compute the *optimal test space* $Y_h^{\text{opt}} = T(X_h)$ where $T : X \mapsto Y$ is defined by

 $(Tw, y)_Y = b(w, y),$ for all $y \in Y, w \in X.$

- Application of *T* decouples into element-by-element calculations when *Y* admits DG functions,
- When Y is infinite-dimensional, we must further approximate T to get a practical method.

The (practical) DPG method

Pick any $X_h \subseteq X$. The ideal DPG method finds $x_h \in X_h$ such that $b(x_h, \mathbf{y}) = \ell(\mathbf{y}),$ for all $\mathbf{y} \in T(X_h),$ where $T: X \mapsto Y$ is defined by $(Tw, y)_Y = b(w, y)$, for all $y \in Y$ and any $w \in X$. Pick any $X_h \subset X$. The (practical) DPG method finds $x_h \in X_h$, using a finite-dimensional $Y_h \subset Y$, such that $b(x_h, y) = \ell(y),$ for all $y \in T_h(X_h),$ where $T_h : X \mapsto Y_h$ is defined by $(T_h w, y)_Y = b(w, y)$, for all $y \in Y_h$ and any $w \in X$.

The (practical) DPG method

Pick any $X_h \subseteq X$. The ideal DPG method finds $x_h \in X_h$ such that

$$x_h = \arg\min_{z_h \in X_h} \|\ell - Bz_h\|_{\mathbf{Y}^*}.$$

Pick any $X_h \subseteq X$. The (practical) DPG method finds $x_h \in X_h$, using a finite-dimensional $Y_h \subseteq Y$, such that

$$\mathbf{x}_h^r = \arg\min_{\mathbf{z}_h \in X_h} \|\ell - B\mathbf{z}_h\|_{\mathbf{Y}_h^*}.$$

Here $B: X \to Y^*$ is the operator generated by the form b(x, y), i.e., b(x, y) = (Bx)(y) for all $x \in X, y \in Y$.

Three avenues to DPG methods

Equivalent Least-Squares method

Find $x_h \in X_h$ satisfying

$$b(\mathbf{x}_h, \mathbf{y}) = \ell(\mathbf{y})$$
 for all $\mathbf{y} \in T_h(\mathbf{X}_h)$ (1)

where $T_h: X \to Y_h$ is defined by $(T_h z, y)_Y = b(z, y)$ for all $y \in Y_h$ for any $z \in X$.

Theorem

$$x_h = \arg \min_{z_h \in X_h} \|\ell - Bz_h\|_{Y_h^*} \quad \Longleftrightarrow \quad x_h \text{ solves (1).}$$

Equivalent Least-Squares method

Find $x_h \in X_h$ satisfying

$$b(\mathbf{x}_h, \mathbf{y}) = \ell(\mathbf{y})$$
 for all $\mathbf{y} \in T_h(X_h)$ (1)

where $T_h: X \to Y_h$ is defined by $(T_h z, y)_Y = b(z, y)$ for all $y \in Y_h$ for any $z \in X$.

Theorem

$$x_h = \arg \min_{z_h \in X_h} \|\ell - Bz_h\|_{Y_h^*} \iff x_h \text{ solves (1)}.$$

Proof:

$$b(x - x_h, T_h z_h) = 0 \iff (T_h(x - x_h), T_h z_h)_Y = 0$$

$$\iff x_h = \arg \min_{z_h \in X_h} ||T_h(x - z_h)||_Y \qquad (T_h = R_{Y_h}^{-1}B)$$

$$\iff x_h = \arg \min_{z_h \in X_h} ||B(x - z_h)||_{Y_h^*}. \qquad \Box$$

Let b(x, y) = (Bx)(y), the sesquilinear form on $X \times Y$ generated by B.

Assumption [U]Uniqueness
$$\{y \in Y : b(x, y) = 0 \text{ for all } x \in X\} = \{0\}.$$
Assumption [I]Inf-Sup $\exists c_1 > 0 : \forall x \in X, \quad c_1 \|x\|_X \leq \sup_{0 \neq y \in Y} \frac{|b(x, y)|}{\|y\|_Y} \leq \|b\| \|x\|_X.$

Let b(x, y) = (Bx)(y), the sesquilinear form on $X \times Y$ generated by B.

Assumption [U]Uniqueness
$$\{y \in Y : b(x, y) = 0 \text{ for all } x \in X\} = \{0\}.$$
Assumption [I]Inf-Sup $\exists c_1 > 0 : \forall x \in X, c_1 ||x||_X \leq \sup_{0 \neq y \in Y} \frac{|b(x, y)|}{||y||_Y} \leq ||b|| ||x||_X.$ Assumption [E]Fortin Operator

 \exists continuous linear $\Pi: Y \to Y_h$ such that

$$b(z_h, y - \Pi y) = 0$$
 for all $z_h \in X_h, y \in Y$.

Theorem

Assumptions $[U + I + F] \implies$

$$||x - x_h||_X \le \frac{||b|| ||\Pi||}{c_1} \inf_{z_h \in X_h} ||x - z_h||_X.$$

Theorem

[G+Qiu 2013]

Assumptions $[U + I + F] \implies$

$$\|x - x_h\|_X \le \frac{\|b\|\|\Pi\|}{c_1} \inf_{z_h \in X_h} \|x - z_h\|_X.$$

Proof: For any $x_h \in X_h \subseteq X$,

$$c_{1} \|x_{h}\|_{X} \leq \sup_{0 \neq y \in Y} \frac{|b(x_{h}, y)|}{\|y\|_{Y}} \qquad \text{by [I]}$$
$$= \sup_{0 \neq y \in Y} \frac{|b(x_{h}, \Pi y)|}{\|y\|_{Y}} \qquad \text{by [F]}$$
$$\leq \|\Pi\| \sup_{0 \neq y \in Y} \frac{|b(x_{h}, \Pi y)|}{\|\Pi y\|_{Y}} \leq \|\Pi\| \sup_{0 \neq y_{h} \in Y_{h}} \frac{|b(x_{h}, y_{h})|}{\|y_{h}\|_{Y}}.$$

Now apply the Babuška's theorem.

The avenue of mixed methods

Equivalent mixed method

The function $e_h \in Y_h$ solving Dahmen+Huang+Schwab+Welper 2012 $(e_h, y)_Y = \ell(y) - b(x_h, y)$ for all $y \in Y_h$ is called the approximate error representation function. Theorem An $x_h \in X_h$ together with some $e_h \in Y_h$ solves $(e_h, v)_V + b(x_h, v) = \ell(v)$ for all $y \in Y_h$, $b(z, e_h) = 0$ for all $z \in X_h$. if and only if $x_h = \arg\min_{z_h \in X_h} \|\ell - Bz_h\|_{Y_h^*}.$

Equivalent mixed method

The function $e_h \in Y_h$ solving Dahmen+Huang+Schwab+Welper 2012 for all $y \in Y_h$ $(e_h, y)_Y = \ell(y) - b(x_h, y)$ is called the **approximate error representation** function. Theorem An $x_h \in X_h$ together with some $e_h \in Y_h$ solves $(e_h, v)_V + b(x_h, v) = \ell(v)$ for all $y \in Y_h$, $b(z, e_h) = 0$ for all $z \in X_h$. if and only if $x_h = \arg\min_{z_h \in X_h} \|\ell - Bz_h\|_{Y_h^*}.$ $b(z_h, e_h) = (T_h z_h, e_h)_Y = (T_h z_h, R_{Y_h}^{-1}(\ell - B x_h))_Y$ Proof: $= (T_h z_h, T_h (x - x_h))_Y = b(x - x_h, T_h z_h) = 0.$

1	Petrov-Galerkin schemes	✓
2	Ideal & practical DPG methods	✓
3	A priori error analysis	✓
4	Least-squares interpretation	✓
5	Interpretation as a mixed method	✓
6	A posteriori error estimate	

Adaptive DPG applied to the Helmholtz equation

Experiment: Use an adaptive algorithm with standard FEM and DPG methods, for simulating a Gaussian beam solution of Helmholtz equation.

Estimating error

Residual:
$$\rho = \ell - Bx_h.$$

Error representation function:

$$\mathbf{e}_h = R_{Y_h}^{-1}(\ell - B x_h).$$

Error estimator:

$$\eta = \|e_h\|_{Y} = \|\rho\|_{Y_h^*} = \|\ell - Bx_h\|_{Y_h^*}.$$

Petrov-Galerkin solve
$$\rightarrow e_h$$
 by local postprocessing

$$\overbrace{\text{Mixed method}}^{\text{Mixed method}} e_h \text{ is one of the variables}$$

Estimating error

$$\rho = \ell - B x_h.$$

Error representation function:

$$e_h = R_{Y_h}^{-1}(\ell - Bx_h).$$

Error estimator:

$$\eta = \|e_h\|_{Y} = \|\rho\|_{Y_h^*} = \|\ell - Bx_h\|_{Y_h^*}.$$

When Y_h consists of DG functions:

• e_h can be computed element-by-element

$$(e_h, y)_Y = \ell(y) - b(x_h, y),$$
 for all $y \in Y_h$.

• Its element-wise norm serves as a local error indicator.

Theorem

Carstensen+Demkowicz+G 2014

Assumptions $[U + I + F] \implies$

$$\begin{aligned} c_1 \| x - x_h \|_X &\leq \eta^2 + (\|\Pi\| \ \eta + \operatorname{osc}(\ell))^2, & \text{(reliability)} \\ \eta &\leq \|b\| \ \|x - x_h\|_X & \text{(efficiency)}. \end{aligned}$$

The data approximation $osc(\ell) = \|\ell \circ (I - \Pi)\|_{Y^*}$ is efficient in the sense

$$\operatorname{osc}(\ell) \leq \|B\| \|I - \Pi\| \min_{z_h \in X_h} \|x - z_h\|_X.$$

Theorem

Carstensen+Demkowicz+G 2014

Assumptions $[U + I + F] \implies$

$$\begin{aligned} c_1 \| x - x_h \|_X &\leq \eta^2 + (\|\Pi\| \ \eta + \operatorname{osc}(\ell))^2, & \text{(reliability)} \\ \eta &\leq \|b\| \| x - x_h \|_X & \text{(efficiency)}. \end{aligned}$$

The data approximation $osc(\ell) = \|\ell \circ (I - \Pi)\|_{Y^*}$ is efficient in the sense

$$\operatorname{osc}(\ell) \leq \|B\| \|I - \Pi\| \min_{z_h \in X_h} \|x - z_h\|_X.$$

Proof: The efficiency estimate is immediate:

$$\eta = \|B(x - x_h)\|_{Y_h^*} \le \|b\| \, \|x - x_h\|_X.$$

Proof of reliability

To prove $c_1^2 ||x - x_h||_X^2 \le \eta^2 + (||\Pi|| \eta + \operatorname{osc}(\ell))^2$, we use these: $e \in Y$: $(e, y)_Y = \ell(y) - b(x_h, y)$ for all $y \in Y$, $e_h \in Y_h$: $(e_h, y)_Y = \ell(y) - b(x_h, y)$ for all $y \in Y_h$.

Reliability of *e* is immediate:

$$c_1 \|x - x_h\|_X \le \sup_{y \in Y} \frac{|b(x - x_h, y)|}{\|y\|_Y} = \|e\|_Y.$$

But we need reliability of e_h .

Proof of reliability

To prove $c_1^2 ||x - x_h||_X^2 \le \eta^2 + (||\Pi|| \eta + \operatorname{osc}(\ell))^2$, we use these: $e \in Y$: $(e, y)_Y = \ell(y) - b(x_h, y)$ for all $y \in Y$, $e_h \in Y_h$: $(e_h, y)_Y = \ell(y) - b(x_h, y)$ for all $y \in Y_h$.

Reliability of *e* is immediate:

$$c_1 \|x - x_h\|_X \le \sup_{y \in Y} \frac{|b(x - x_h, y)|}{\|y\|_Y} = \|e\|_Y.$$

To obtain reliability of e_h , observe that $\|e\|_Y^2 = \|e_h\|_Y^2 + \|\underbrace{e - e_h}_{\delta}\|_Y^2$ and $\|\delta\|_Y^2 = (\delta, \delta - \Pi\delta)_Y = (e - e_h, \delta - \Pi\delta)_Y$ $= \ell(\delta - \Pi\delta) - b(x_h, \delta - \Pi\delta) - (e_h, \delta - \Pi\delta)_Y$

Proof of reliability

To prove $c_1^2 ||x - x_h||_X^2 \le \eta^2 + (||\Pi|| \eta + \operatorname{osc}(\ell))^2$, we use these: $e \in Y$: $(e, y)_Y = \ell(y) - b(x_h, y)$ for all $y \in Y$, $e_h \in Y_h$: $(e_h, y)_Y = \ell(y) - b(x_h, y)$ for all $y \in Y_h$.

Reliability of *e* is immediate:

$$c_1 \|x - x_h\|_X \le \sup_{y \in Y} \frac{|b(x - x_h, y)|}{\|y\|_Y} = \|e\|_Y.$$

To obtain reliability of e_h , observe that $\|e\|_Y^2 = \|e_h\|_Y^2 + \|\underbrace{e - e_h}_{\delta}\|_Y^2$ and $\|\delta\|_Y^2 = (\delta, \delta - \Pi\delta)_Y = (e - e_h, \delta - \Pi\delta)_Y$ $= \ell(\delta - \Pi\delta) - b(x_h, \delta - \Lambda\delta) - (e_h, \delta - \Pi\delta)_Y$ $\leq \operatorname{osc}(\ell) \|\delta\|_Y + \|e_h\|_Y \|\Pi\| \|\delta\|_Y.$

Remarks on the theorem

- The proof never used the fact the x_h is the DPG solution.
- Hence the theorem holds in fact for any $\tilde{x}_h \in X_h$, such as an inexactly computed solution. The residual $\tilde{\eta} = \|\ell B\tilde{x}_h\|_{Y_h^*}$ can be used for error estimation.
- The reliability estimate

$$c_1 \|x - x_h\|_X \le \eta^2 + \left(\eta \|\Pi\| + \operatorname{osc}(\ell)\right)^2$$

was improved to

$$c_1 \|x - x_h\|_X \le \eta^2 + \left(\eta \sqrt{\|\Pi\|^2 - 1} + \operatorname{osc}(\ell)\right)^2$$

by [Keith+Vaziriastaneh+Demkowicz 2017] when Π is a projection.

1	Petrov-Galerkin schemes	\checkmark
2	Ideal & practical DPG methods	✓
3	A priori error analysis	✓
4	Least-squares interpretation	✓
5	Interpretation as a mixed method	✓
6	A posteriori error estimate	✓