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The philosophy

Numerical methods achieve stability in many different ways.

Standard finite element method: coercivity & conformity

Mixed methods: balanced pair of spaces

SUPG methods: artificially added streamline diffusion

DG methods: upwind stabilization & jump penalization

HDG methods: difference between interior & interface unknowns
...

...

DPG methods: stability by automatic test space design
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Outline of Lecture 2

1 Petrov-Galerkin schemes

2 Ideal & practical DPG methods

3 A priori error analysis

4 Least-squares interpretation

5 Interpretation as a mixed method

6 A posteriori error estimate
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“Petrov-Galerkin” schemes (PG)

PG schemes are distinguished by different trial and test (Hilbert) spaces.

The problem:

[
P.D.E.+

boundary conditions.

↓

Variational form:

Find x in a trial space X satisfying

b(x , y) = `(y)

for all y in a test space Y.

↓

Discretization:

Find xh in a discrete trial space Xh ⊂ X satisfying

b(xh, yh) = `(yh)

for all yh in a discrete test space Yh ⊂ Y .

For PG schemes, Xh 6= Yh in general.
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Historical remarks

1 [B. G. Galerkin, 1915] “Series occurring in various questions concerning the elastic
equilibrium of rods and plates”, Vestnik Inzhenerov

(Engineer’s Bulletin).

2 [G. I. Petrov, 1940] “Application of the method of Galerkin to a problem involving
the stationary flow of a viscous fluid. Prikl. Matem. i Mekh.

(Journal of Applied Mathematics and Mechanics).

3 [S. G. Mikhlin, 1950] “Variational methods of solution of problems of
mathematical physics”, Uspekhi Mat. Nauk

(Russian Math. Surveys).
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Petrov’s paper

However, there is no example, or analysis, in the rest of
the paper with v i 6= ϕi .

Jay Gopalakrishnan 6/27



Petrov’s paper

...

...

However, there is no example, or analysis, in the rest of
the paper with v i 6= ϕi .

Jay Gopalakrishnan 6/27



Petrov’s paper

“. . . If functions v i are taken to be the same as ϕi , then (1.4) is the equation of
Galerkin’s method.

In some cases, it can be useful to employ another set of v i , since v i need not

satisfy the boundary conditions . . . ”

However, there is no example, or analysis, in the rest of
the paper with v i 6= ϕi .
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Mikhlin’s review
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Mikhlin’s review

Mikhlin refers to Petrov’s contribution as the

“generalized Galerkin method”.

Mikhlin says that an analysis of such methods was performed in an
early dissertation:

I [N. I. Pol’sky, 1949] “On the convergence of approximation methods of

Galerkin type”, Kiev State University, Ph. D. dissertation (hand written).

If anyone knows more about the analysis in this dissertation, please
contact me!
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Elements of modern theory

Variational formulation: (BNB Theorem) Exact inf-sup condition

c1‖x‖X ≤ sup
y∈Y

|b(x , y)|
‖y‖Y

+

[
adjoint

uniqueness

]
=⇒ wellposedness

Babuška’s theorem: [Babuška 1970], [Xu+Zikatanov 2003] Discrete inf-sup condition

c2‖xh‖X ≤ sup
yh∈Yh

|b(xh, yh)|
‖yh‖Y

 =⇒ ‖x − xh‖X ≤
‖b‖
c2

inf
wh∈Xh

‖x − wh‖X .

Difficulty: Exact inf-sup condition 6=⇒ Discrete inf-sup condition

Is there a way to find a stable test space for any given trial space?
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The best test space & ideal DPG method

Pick any Xh ⊆ X . The ideal DPG method finds xh ∈ Xh satisfying

b(xh, y) = `(y), for all y ∈ Y opt
h

def
= T (Xh),

where T : X 7→ Y is defined by (Tw , y)Y = b(w , y), for all y ∈ Y
and any w ∈ X .

Rationale:

Q: Which function y maximizes
|b(x , y)|
‖y‖Y

for any given x ?

A: y = Tx is the maximizer. ← Optimal test function.
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The best test space & ideal DPG method

Pick any Xh ⊆ X . The ideal DPG method finds xh ∈ Xh satisfying

b(xh, y) = `(y), for all y ∈ Y opt
h

def
= T (Xh),

where T : X 7→ Y is defined by (Tw , y)Y = b(w , y), for all y ∈ Y
and any w ∈ X .

Rationale:

Q: Which function y maximizes
|b(x , y)|
‖y‖Y

for any given x ?

A: y = Tx is the maximizer. ← Optimal test function.

DPG Idea: If the discrete test space contains the optimal test functions,

exact inf-sup condition =⇒ discrete inf-sup condition.
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Quasioptimality of the ideal DPG Method

Assumption [U] Uniqueness

{y ∈ Y : b(x , y) = 0 for all x ∈ X} = {0}.

Assumption [I] Inf-Sup

∃c1 > 0 : ∀x ∈ X , c1‖x‖X ≤ sup
06=y∈Y

|b(x , y)|
‖y‖Y

≤ ‖b‖ ‖x‖X .

Theorem [Demkowicz+G 2011]

Assumptions [U+I] =⇒

‖x − xh‖X ≤
‖b‖
c1

inf
wh∈Xh

‖x − wh‖X .

Proof: Since the discrete inf-sup condition holds, apply Babuška’s
theorem. �
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Example: An ODE

1D transport:

[
u′ = f in (0, 1),

u(0) = u0 (inflow b.c.)

L2 weak form:



Find u ∈ L2, and a number û1 ∈ R, satisfying

−
∫ 1

0
uv ′ + û1v(1)︸ ︷︷ ︸

b( (u,û1), v)

=

∫ 1

0
f v + u0v(0)︸ ︷︷ ︸

`(v)

, v ∈ H1.

Trial space: X = L2 × R, ‖(u, û1)‖2X = ‖u‖2 + |û1|2.
Test space: Y = H1, ‖v‖2Y = ‖v ′‖2 + |v(0)|2.

Ideal DPG:

[
Find (up, û1) ∈ Xh ≡ Pp × R, satisfying

b( (up, û1), v) = `(v), for all v ∈ Y opt
h = T (Xh).
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Example: An ODE

Exercise: For this example, Y opt
h = Pp+1.

0 0.2 0.4 0.6 0.8 1
−3

−2.5

−2

−1.5

−1

−0.5

0

x

u(
x)

The spectral DG solutions

 

 

Exact solution
p=1
p=3
p=8

Experiment: Solve ODE
(the transport equation)
using DG and ideal DPG
on a single element.

Exact solution has a
sharp layer at x = 1.

DPG is more stable.
Solution oscillates an
order of magnitude less.
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The importance of “D” in “DPG”

The ideal DPG method requires us to compute the optimal test space
Y opt
h = T (Xh) where T : X 7→ Y is defined by

(Tw , y)Y = b(w , y), for all y ∈ Y ,w ∈ X .

Application of T decouples into element-by-element calculations
when Y admits DG functions,

When Y is infinite-dimensional, we must further approximate T to
get a practical method.

Jay Gopalakrishnan 13/27



The (practical) DPG method

Pick any Xh ⊆ X . The ideal DPG method finds xh ∈ Xh such that

b(xh, y) = `(y), for all y ∈ T (Xh),

where T : X 7→ Y is defined by (Tw , y)Y = b(w , y), for all y ∈ Y
and any w ∈ X .

Pick any Xh ⊆ X . The (practical) DPG method finds xh ∈ Xh,
using a finite-dimensional Yh ⊆ Y , such that

b(xh, y) = `(y), for all y ∈ Th(Xh),

where Th : X 7→ Yh is defined by (Thw , y)Y = b(w , y), for all
y ∈ Yh and any w ∈ X .

Here B : X → Y ∗ is the operator generated by the form b(x , y), i.e.,
b(x , y) = (Bx)(y) for all x ∈ X , y ∈ Y .
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xh = arg min
zh∈Xh

‖`− Bzh‖Y ∗ .

where T : X 7→ Y is defined by (Tw , y)Y = b(w , y), for all y ∈ Y
and any w ∈ X .
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h
.
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Three avenues to DPG methods

DPG
methods

Least-squares
Galerkin method

Petrov-Galerkin
with optimal
test space

Mixed Galerkin
method
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Equivalent Least-Squares method

Find xh ∈ Xh satisfying

b(xh, y) = `(y) for all y ∈ Th(Xh) (1)

where Th : X → Yh is defined by (Thz , y)Y = b(z , y) for all y ∈ Yh for
any z ∈ X .

Theorem

xh = arg min
zh∈Xh

‖`− Bzh‖Y ∗
h

⇐⇒ xh solves (1).
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Equivalent Least-Squares method

Find xh ∈ Xh satisfying

b(xh, y) = `(y) for all y ∈ Th(Xh) (1)

where Th : X → Yh is defined by (Thz , y)Y = b(z , y) for all y ∈ Yh for
any z ∈ X .

Theorem

xh = arg min
zh∈Xh

‖`− Bzh‖Y ∗
h

⇐⇒ xh solves (1).

Proof:

b(x − xh,Thzh) = 0 ⇐⇒ (Th(x − xh),Thzh)Y = 0

⇐⇒ xh = arg min
zh∈Xh

‖Th(x − zh)‖Y (Th = R−1Yh
B)

⇐⇒ xh = arg min
zh∈Xh

‖B(x − zh)‖Y ∗
h
. �
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Assumptions for error analysis

Let b(x , y) = (Bx)(y), the sesquilinear form on X × Y generated by B.

Assumption [U] Uniqueness

{y ∈ Y : b(x , y) = 0 for all x ∈ X} = {0}.

Assumption [I] Inf-Sup

∃c1 > 0 : ∀x ∈ X , c1‖x‖X ≤ sup
06=y∈Y

|b(x , y)|
‖y‖Y

≤ ‖b‖ ‖x‖X .

Assumption [F] Fortin Operator

∃ continuous linear Π : Y → Yh such that

b(zh, y −Πy) = 0 for all zh ∈ Xh, y ∈ Y .
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A priori error analysis

Theorem [G+Qiu 2013]

Assumptions [U + I + F] =⇒

‖x − xh‖X ≤
‖b‖‖Π‖

c1
inf

zh∈Xh

‖x − zh‖X .

Proof: For any xh ∈ Xh ⊆ X ,

c1‖xh‖X ≤ sup
06=y∈Y

|b(xh, y)|
‖y‖Y

by [I]

= sup
06=y∈Y

|b(xh, Πy)|
‖y‖Y

by [F]

≤ ‖Π‖ sup
06=y∈Y

|b(xh, Πy)|
‖Πy‖Y

≤ ‖Π‖ sup
06=yh∈Yh

|b(xh, yh)|
‖yh‖Y

.

Now apply the Babuška’s theorem. �
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Jay Gopalakrishnan 18/27



The avenue of mixed methods

DPG
methods

Least-squares
Galerkin method

Petrov-Galerkin
with optimal
test space

Mixed Galerkin
method
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Equivalent mixed method

The function eh ∈ Yh solving [Dahmen+Huang+Schwab+Welper 2012]

(eh, y)Y = `(y)− b(xh, y) for all y ∈ Yh

is called the approximate error representation function.

Theorem

An xh ∈ Xh together with some eh ∈ Yh solves

(eh, y)Y + b(xh, y) = `(y) for all y ∈ Yh,

b(z , eh) = 0 for all z ∈ Xh,

if and only if
xh = arg min

zh∈Xh

‖`− Bzh‖Y ∗
h
.

Proof: b(zh, eh) = (Thzh, eh)Y = (Thzh,R
−1
Yh

(`− Bxh))Y

= (Thzh,Th(x − xh))Y = b(x − xh,Thzh) = 0. �

Jay Gopalakrishnan 20/27



Equivalent mixed method

The function eh ∈ Yh solving [Dahmen+Huang+Schwab+Welper 2012]

(eh, y)Y = `(y)− b(xh, y) for all y ∈ Yh

is called the approximate error representation function.

Theorem

An xh ∈ Xh together with some eh ∈ Yh solves

(eh, y)Y + b(xh, y) = `(y) for all y ∈ Yh,

b(z , eh) = 0 for all z ∈ Xh,

if and only if
xh = arg min

zh∈Xh

‖`− Bzh‖Y ∗
h
.

Proof: b(zh, eh) = (Thzh, eh)Y = (Thzh,R
−1
Yh

(`− Bxh))Y

= (Thzh,Th(x − xh))Y = b(x − xh,Thzh) = 0. �

Jay Gopalakrishnan 20/27



Next

1 Petrov-Galerkin schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

2 Ideal & practical DPG methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

3 A priori error analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

4 Least-squares interpretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

5 Interpretation as a mixed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

6 A posteriori error estimate

Jay Gopalakrishnan 21/27



Adaptive DPG applied to the Helmholtz equation

Standard finite elements DPG method

Experiment: Use an adaptive algorithm with standard FEM and DPG
methods, for simulating a Gaussian beam solution of Helmholtz equation.
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Estimating error

Residual: ρ = `− Bxh.

Error representation function:
eh = R−1Yh

(`− Bxh).

Error estimator: η = ‖eh‖Y = ‖ρ‖Y ∗
h

= ‖`− Bxh‖Y ∗
h

.

Petrov-Galerkin solve eh by local postprocessing

Least-squares eh is Riesz inverse of residual

Mixed method eh is one of the variables
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Estimating error

Residual: ρ = `− Bxh.

Error representation function:
eh = R−1Yh

(`− Bxh).

Error estimator: η = ‖eh‖Y = ‖ρ‖Y ∗
h

= ‖`− Bxh‖Y ∗
h

.

When Yh consists of DG functions:

eh can be computed element-by-element

(eh, y)Y = `(y)− b(xh, y), for all y ∈ Yh.

Its element-wise norm serves as a local error indicator.
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A posteriori error control

Theorem [Carstensen+Demkowicz+G 2014]

Assumptions [U + I + F] =⇒

c1‖x − xh‖X ≤ η2 + (‖Π‖ η + osc(`))2, (reliability)

η ≤ ‖b‖ ‖x − xh‖X (efficiency).

The data approximation osc(`) = ‖` ◦ (I −Π)‖Y ∗ is efficient in the sense

osc(`) ≤ ‖B‖ ‖I −Π‖ min
zh∈Xh

‖x − zh‖X .

Proof: The efficiency estimate is immediate:

η = ‖B(x − xh)‖Y ∗
h
≤ ‖b‖ ‖x − xh‖X .
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Proof of reliability

To prove c21‖x − xh‖2X ≤ η2 + (‖Π‖ η + osc(`))2, we use these:

e ∈ Y : (e, y)Y = `(y)− b(xh, y) for all y ∈ Y ,

eh ∈ Yh : (eh, y)Y = `(y)− b(xh, y) for all y ∈ Yh.

Reliability of e is immediate:

c1‖x − xh‖X ≤ sup
y∈Y

|b(x − xh, y)|
‖y‖Y

= ‖e‖Y .

But we need reliability of eh.

‖e‖2Y = ‖eh‖2Y + ‖ e − eh︸ ︷︷ ︸
δ

‖2Y and

‖δ‖2Y = (δ, δ −Πδ)Y = (e − eh, δ −Πδ)Y

= `(δ −Πδ)− b(xh, δ −Πδ)− (eh, δ −Πδ)Y

≤ osc(`)‖δ‖Y + ‖eh‖Y ‖Π‖‖δ‖Y .

�
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y∈Y

|b(x − xh, y)|
‖y‖Y

= ‖e‖Y .

To obtain reliability of eh, observe that ‖e‖2Y = ‖eh‖2Y + ‖ e − eh︸ ︷︷ ︸
δ

‖2Y and

‖δ‖2Y = (δ, δ −Πδ)Y = (e − eh, δ −Πδ)Y

= `(δ −Πδ)− b(xh, δ −Πδ)− (eh, δ −Πδ)Y

≤ osc(`)‖δ‖Y + ‖eh‖Y ‖Π‖‖δ‖Y .
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Remarks on the theorem

The proof never used the fact the xh is the DPG solution.

Hence the theorem holds in fact for any x̃h ∈ Xh, such as an inexactly
computed solution. The residual η̃ = ‖`− Bx̃h‖Y ∗

h
can be used for

error estimation.

The reliability estimate

c1‖x − xh‖X ≤ η2 +

(
η‖Π‖+ osc(`

)2

was improved to

c1‖x − xh‖X ≤ η2 +

(
η
√
‖Π‖2 − 1 + osc(`)

)2

by [Keith+Vaziriastaneh+Demkowicz 2017] when Π is a projection.
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